Small-Angle Neutron Scattering Study of Metallic Sodium on Phase Transition

Hiroshi ABE, Ryuji J. MATSUO1, Mikio ISHIBASHI1, Ken-ichi OHSHIMA1, Masayuki IMAI2 and Kazuhisa KAKURAI2

Department of Materials Science and Engineering, National Defense Academy, Yokosuka 239

1Institute of Applied Physics, University of Tsukuba, Tsukuba 305

2Neutron Scattering Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-11


In metallic sodium, a characteristic waiting time, which is the incubation time until phase transition starts, appears above at a fixed temperature. Small-angle neutron scattering from clusters of the low-temperature phase is observed, which shows good agreement with the aggregation-of-spheres model, whose radius distribution is a Maxwell distribution function. Using the aggregation-of-spheres model, the average radius, r0, of clusters of the low-temperature phase was found to be 57.2?. Moreover, abnormal small-angle neutron scattering from local fluctuations is seen during the waiting time, where this waiting time is related to the nucleation process in the martensitic phase transition.

Keywords: martensitic phase transition, kinetics, incubation time, dynamic embryo 

Fig. 1  Small-angle neutron scatering intensity from clusters of the low-tempeature phase at 10 K. The solid curve was obtained from the dense aggregation model described by eq. (4).
Fig.2  Maxwell distribution function used to calculate curve in Fig. 1, where the integral value of this is equal to 1.
Fig. 3
Fig. 4
Fig. 5

References

1) C. S. Barrett: Acta Cryst. 9 (1956) 671.

2) R. Berliner, O. Fajen, H. G. Smith and R. L. Hitterman: Phys. Rev. B40 (1989) 12086.

3) R. Berliner, H. G. Smith, J. R. D. Copley and J. Trivisonno: Phys. Rev. B46 (1992) 14436.

4) O. Blaschko and G. Krexner: Phys. Rev. B30 (1984) 1667.

5) R. Berliner, H. G. Smith, J. R. D. Copley and J. Trivisonno: Phys. Rev. B46 (1992) 14436.

6) H. Abe, K. Ohshima, T. Suzuki, S. Hoshino and K. Kakurai: Phys. Rev .B49 (1994) 3739.

7) H. G. Smith, R. Berliner and J. Trivisonno: Phys. Rev. B49 (1994) 8547.

8) T. Ohba, S. M. Shapiro, S. Aoki and K. Otsuka: Jpn. J. Appl. Phys. 33 (1994) L1631.

9) S. M. Shapiro, B. X. Yang, G. Shirane, Y. Noda and L. E. Tanner: Phys. Rev. Lett. 62 (1989) 1298.

10) H. Tietze, M. Mullner and B. Renker: J. Phys. C17 (1984) L529.

11) Y. Noda, M. Takimoto, T. Nakagawa and Y. Yamada: Metall. Trans. A. 19A (1988) 265.

12) Y. Yamada, Y. Noda and K. Fuchizaki: Phys. Rev. B42 (1990) 10405.

13) H. G. Smith: Phys. Rev. Lett. 58 (1987) 1228.

14) T. Kakeshita, K. Kuroiwa, K. Shimizu, T. Ikeda, A. Yamagishi and M. Date: Mater. Trans. JIM 34 (1993) 415.

15) M. Imai, K. Kaji and T. Kanaya: Phys. Rev. Lett. 71 (1993) 4162.

16) K. Tajima, Y. Shinoda and M. Tadakuma: J. Phys. Soc. Jpn. 64 (1995) 2074.

17) H. Abe, M. Ishibashi, K. Ohshima, T. Suzuki, M. Wuttig and K. Kakurai: Phys. Rev. B50 (1994) 9020.

18) T. Kakeshita, K. Kuroiwa, K. Shimizu, T. Ikeda, A. Yamagishi and M. Date: Mater. Trans. JIM 34 (1993) 423.

19) P. Debye: Phys. Z. 28 (1927) 135.

20) O. Kratky and G. Porod: J. Colloid Sci. 4 (1949) 35.


Back to Publications list
ab@cc.nda.ac.jp
Department of Materials Science and Engineering
National Defense Academy

Last Modified: April 1, 2009