PREMONITORY MARTENSITIC SURFACE RELIEF VIA NOVEL X-RAY DIFFUSE AND LASER LIGHT REFLECTIVITY FROM THE (001)-SURFACE OF A NI63AL37 SINGLE CRYSTAL


U. KLEMRADT *, M. ASPELMEYER *, ***H. ABE *, L. T. WOOD *, S. C. Moss *, E. DIMASI **, J. PEISL ***

* Department of Physics, University of Houston, Houston, TX 77204-5506, USA
** Brookhaven National Laboratory, Phys. Dept., Upton, NY 11973-5000, USA
*** Univ. Munchen, Sektion Physik, Geschw. -Scholl-Pl. 1, D-80539 Munchen, Germany

Mat. Res. Soc. Symp. Proc. Vol. 580, 293 (2000).


Both x-ray diffuse reflectivity and laser light scattering have been used to investigate the temperature-dependent surface behavior of a Ni63Al37 single crystal on different length scales. In-situ experiments were performed above the conventional martensitic start temperature Ms to search for premartensitic phenomena. X-ray experiments showed the presence of a surface precursor with second-order (continuous) character several 10 K above Ms. This premonitory effect corresponds to a height-height-correlation function which changes on the nanometer scale as the martensitic transformation is approached. At the martensitic transformation, the surface morphology changed from nanoscopic roughness to macroscopic relief within a temperature interval of less than 1 K via intermediate stages. Laser light scattering was employed to study time-dependent aspects of the athermal martensitic transformation above Ms. The occurrence of a martensitic transformation on isothermal holding after a certain incubation period was observed in Ni-Al for the first time. The measured incubation times increased by four orders of magnitude within a temperature interval of 0.5 K.


References

1. M. Cohen, G. B. Olson and P. C. Clapp, in Proceedings of the International Conference on Martensitic Transformations 1979, edited by W. S. Owen (MIT, Cambrige, 1979), p. 1.
2. J. W. Cristian, G. B Olson and M. Cohen, J. de Physique IV, Colloq. C8, 3 (1995).
3. J. van Humbeeck and R. Stalmans, in Shape Memory Materials, edited by Otsuka and C. M. Wayman (Cambrige University Press, Cambrige, 1998), p. 176.
4. L. E. Tanner and M. Wuttig, Mat. Sci. Eng. A127, 137 (1990).
5. S. C. Moss, Mat. Sci. Eng. A127, 187 (1990).
6. J. W. Christian, Mat. Sci. Eng. A127, 214 (1990).
7. S. M. Shapiro, J. Z. Larese, Y. Noda, S. C. Moss and L. E. Tanner, Phys. Rev. Lett. 57, 3199 (1986).
8. S. M. Shapiro, B. X. Yang, G. Shirane, Y. Noda and L. E. Tanner, Phys. Rev. Lett. 62, 1298 (1989).
9. S. M. Shapiro, E. C. Svensson, C. Vettier and B. Hennion, Phys. Rev. B 48, 13223 (1993).
10. J. A. Krumhansl, Solid State Comm. 84, 251 (1992).
11. P. C. Clapp, Phys. Stat. Sol. (b) 57, 561 (1973).
12. V. V. Kokorin, Phase Transitions 54, 143 (1995).
13. T. Kakeshita et al., Mater. Trans. JIM 34, 415 (1993); 34, 423 (1993).
14. M. Aspelmeyer, U. Klemradt, L. T. Wood, S. C. Moss, J. Peisl, Phys. Stat. Sol. (a) 174, R9 (1999).


Back to Publications List


ab@cc.nda.ac.jp
Department of Materials Science and Engineering
National Defense Academy

Last Modified: April 1, 2009