Two-stage transformation of aluminum-containing NiTi



Hitoshi Matsumoto, Hiroshi Abe,  Yuki Morikawa

Department of Materials Science and Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka 239-8686, Japan

Physica B 322, 24 (2002).


Abstract
  Measurements of electrical resistivity, ultrasonic velocity and attenuation for equiatomic NiTi and Ni50Ti49Al1 were performed in order to characterize the thermoelastic martensitic transformation during cooling. The NiTi shows one-stage transformation, essentially, because a premartensitic phenomenon is negligibly faint. The ultrasonic anomalies in NiTi appear near the temperature at a faint resistivity-peak, which correspond to lattice softening at the start temperature of martensitic transformation from the high-temperature phase to the low-temperature phase. The resistivity of Ni50Ti49Al1 has a negative temperature coefficient over the wide temperature range from room temperature to 154 K, and indicates a large peak. Such an anomaly in resistivity corresponds to an enhanced premartensitic phenomenon, where ultrasonic anomalies caused by a two-stage transformation are observed which accompany a large change in electrical resistivity. However, a resistivity peak in the aluminum-containing NiTi is formed at lower temperature than those at ultrasonic anomalies by over 40 K, and the temperature at the resistivity peak is not one characterizing the transformation behavior. It proved helpful to measure the ultrasonic properties in comparison with the electrical resistivity in order to characterize successive transformation in the temperature range of a premartensitic phenomenon of NiTi enhanced by addition of aluminum.

Keywords: NiTi alloy; NiTi(Al) alloy; Martensitic transformation; Electrical resistivity; Ultrasonic velocity; Ultrasonic attenuation


References

[1] T. Saburi, in: K. Otsuka, C.M. Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge, 1998, p. 49.
[2] H. Matsumoto, J. Japan. Soc. Strength Fracture Mater. 32 (1998) 21 (in Japanese).
[3] D. Bradly, J. Acoust. Soc. Am. 37 (1965) 700.
[4] N.G. Pace, G.A. Saunders, Phil. Mag. 22 (1970) 73.
[5] N.G. Pace, G.A. Saunders, Solid State Commun. 9 (1971) 331.
[6] J.E. Hanlon, S.R. Butler, R.J. Wasilewski, Trans. Metall. Soc. AIME 239 (1967) 1323.
[7] G.D. Sandrock, A.J. Perkins, R.F. Hehemann, Metall. Trans. 2 (1971) 2769.
[8] T. Honma, H. Takei, J. Jpn. Inst. Met. 39 (1975) 175 (in Japanese).
[9] H. Matsumoto, S. Dohi, in: Proceedings of the Twenty Seventh Japan Congress on Materials Research, Society of Materials Science, Kyoto, 1984, p. 1.
[10] H. Tietze, M. muller, B. Renker, J. Phys. C 17 (1984) L529.
[11] H. Matsumoto, H. Ishiguro, J. Less-Common Met. 144 (1988) L39.
[12] H. Matsumoto, J. Alloys, Compounds 178 (1992) l1; H. Matsumoto, J. Mater. Sci. Lett. 11 (1992) 367.
[13] H. Matsumoto, Solid State Commun. 86 (1993) 755.
[14] H. Matsumoto, J. Mater. Sci. Lett. 10 (1991) 408.
[15] H. Matsumoto, Mater. Lett. 11 (1991) 40.
[16] H. Matsumoto, Physica B 190 (1993) 115.
[17] Y.N. Wang, J.M. Guei, K.F. Sun, F. Yuan, in: Proceedings of the International Conference on Martensitic Transformations, Japan Institute of Metals, 1987, p. 127.
[18] M. Matsumoto, T. Honma, in: Proceedings of the First JIM Institute Symposium on New Aspects of Martensitic Transformation, Japan Institute of Metals, 1976, p. 199.
[19] C.M. Hwang, C.M. Wayman, Scr. Metall. 17 (1983)381and 385.
[20] H. Matsumoto, H. Ishiguro, J. Less-Common. Met. 153 (1989) 57.
[21] H. Matsumoto, Physica B 160 (1989) 138; H. Matsumoto, J. Less-Common. Met. 155 (1989) L5.
[22] K. Sugimoto, K. Kamei, T. Sugimoto, T. Sodeoka, in: Proceedings of the International Conference on Martensitic Transformations, Japan Institute of Metals, 1987, p.729.
[23] H. Matsumoto, J. Mater. Sci. Lett. 10 (1991) 591.
[24] N. Ishii, H. Matsumoto, J. Mater. Sci. Lett. 18 (1999) 1853.
[25] T.V. Philip, P.A. Beck, Trans. AIME 209 (1957) 1269.
[26] K. Otsuka, T. Sawamura, K. Shimizu, Phys. Stat. Sol. 5 (1971) 457.
[27] G.M. Michal, R. Sinclair, Acta Cryst. B37 (1981) 1803.
[28] K. Chandra, G.R. Purdy, J. Appl. Phys. 39 (1968) 2176.
[29] H. Matsumoto, J. Mater. Sci. Lett. 10 (1991) 417.
[30] H. Matsumoto, Sci. Eng. Rep. National Defense Acad. Japan 31 (1993) 165 (in Japanese); H. Matsumoto, Sci. Eng. Rep. National Defense Acad. Japan 31 (1994) 247 (in Japanese).
[31] H. Matsumoto, K. Ojima, J. Mater. Sci. Lett. 8 (1989) 727.


Back to Publications List
ab@nda.ac.jp

Department of Materials Science and Engineering
National Defense Academy

Last Modified: April 1, 2009