Existence of Nearly-Free Hydrogen Bonds in an Ionic Liquid, N, N-diethyl-N-methyl-N-(2-methoxyethyl) Ammonium Tetrafluoroborate-Water at 77 K

Y. Yoshimura,*,υ T. Goto,υ H. Abe,φ and Y. Imaiφ
Department of Applied Chemistry, Department of Materials Science and Engineering, National Defense Academy,Yokosuka, Kanagawa 239-8686, Japan

J. Phys. Chem. B 2009, 113, 8091


Abstract

When making the glassy water-ionic liquid, N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate [DEME][BF4] solution, the water molecule existing as a single molecule without self-associated state is preserved even at 77 K and survives not to form the hydrogen bond network among themselves as in pure H2O liquid. The water molecule might loosely interact with BF4 - anions. At water-rich concentration, H2O ice crystals and the water molecules in the ionic liquid coexist as a mixture, which may result from microheterogeneities in the solid aqueous ionic liquid solution.



Figure 1. (a) Spectral changes of the water-[DEME][BF4] solutions probed by Raman OH stretching spectra in the region 2600-3800 cm-1 as a function of xmol % H2O at room temperature. (b) Spectral changes of the nearly-free hydrogen bonded band in the OH stretching vibrational region ranging between 3400-3700 cm-1. The peak heights are normalized by the strongest peak of CH stretching vibration of [DEME][BF4].


Figure 2. (a) Spectral changes of the water-[DEME][BF4] solutions probed by Raman OH stretching spectra in the region 2600-3800 cm-1 as a function of x mol % H2O at 77 K. The arrows show the peaks arising from ice Ih. (b) Spectral changes of the nearly-free hydrogenbonded band in the OH stretching vibrational region ranging between 3400-3700 cm-1. The peak heights are normalized by the strongest peak of CH stretching vibration of [DEME][BF4].


Figure 3. Comparison of the spectra for the water-[DEME][BF4] solutions at x = 12.0 mol % (a,b) and x = 80.1 mol % (c,d). The right panels (c,d) show the spectral changes of the nearly-free hydrogenbonded band in the OH stretching spectra. Dashed and solid curves show the spectra measured at 298 and 77 K, respectively. The peak heights are normalized by the strongest peak of CH stretching vibration of [DEME][BF4].


Figure 4. (a) Spectral changes of the Raman OH stretching band on phase transition behavior from the glassy water-[DEME][BF4] solution at x = 12.0 mol %. The heating rate was 5 K/min. The right panel (b) shows the changes in the nearly-free hydrogen bonded band of water as a function of temperature.

References

(1) Earle, M. J.; Seddon, R. Pure Appl. Chem. 2000, 72, 1391.
(2) Seddon, K. R.; Stark, A.; Torres, M.-J. Pure Appl. Chem. 2002, 72, 2275.
(3) Saha, S.; Hamaguchi, H. J. Phys. Chem. B 2006, 110, 2777.
(4) Cammarata, L.; Kazarian, S. G.; Salter, P. A.; Welton, T. Phys. Chem. Chem. Phys. 2001, 3, 5192.
(5) Tran, C. D.; De Paoli Lacerda, S. H.; Oliveira, D. Appl. Spectrosc. 2003, 57, 152.
(6) Jin, H.; Li, X.; Maroncelli, M. J. Phys. Chem. B 2007, 111, 13473.
(7) Paul, A.; Kumar, P.; Samanta, A. Chem. Phys. Lett. 2005, 402, 375.
(8) Hu, Z.; Margulis, C. J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 831.
(9) Adhikari, A.; Sahu, K.; Dey, S.; Ghosh, S.; Mandal, U.; Bhattacharyya, K. J. Chem. Phys. B 2007, 111, 12809.
(10) Jiang, W.; Wang, Y.; Voth, G. A. J. Phys. Chem. B 2007, 111, 4812.
(11) Moreno, M.; Castiglione, F.; Mele, A.; Pasqui, C.; Raos, G. J. Phys. Chem. B 2008, 112, 7826.
(12) Tanaka, H. Nature 1996, 380, 328.
(13) Mishima, O.; Stanley, H. E. Nature 1998, 396, 329.
(14) Angell, C. A. Nature 1998, 331, 206.
(15) Smith, R. S.; Kay, B. D. Nature 1999, 398, 788.
(16) Johari, G. P.; Hallbruker, A.; Mayer, E. Nature 1987, 330, 552.
(17) Angell, C. A.; Sare, E. J. Chem. Phys. 1970, 52, 1058.
(18) Sato, T.; Masuda, G.; Takagi, K. Electrochim. Acta 2004, 49, 3603.
(19) Yoshimura, Y.; Namekata, S.; Kanno, H. J. Solution Chem. 2001, 30, 213.
(20) Kanno, H.; Ohnishi, A.; Tomikawa, K.; Yoshimura, Y. J. Raman Spectrosc. 2003, 32, 239.
(21) Eisenberg, D.; Kauzmann, W. The Structure and Properties of Water; Oxford University Press: New York, 1969.
(22) Scatena, L. F.; Brown, M. G.; Richmond, G. L. Science 2001, 292, 908.
(23) Othen, D. A.; Knop, O.; Falk, M. Can. J. Chem. 1962, 53, 3837.
(24) Drago, R. S.; OfBryan, N.; Vogel, G. C. J. Am. Chem. Soc. 1970, 92, 3924.
(25) Kanno, H.; Hiraishi, J. Chem. Phys. Lett. 1981, 83, 452.
(26) Scherer, J. R.; Go, M. K.; Kint, S. J. Phys. Chem. 1974, 78, 1304.
(27) Jeon, Y.; Sung, J.; Kim, D.; Seo, C.; Cheong, H.; Ouchi, Y.; Ozawa, R.; Hamaguchi, H. J. Phys. Chem. B 2008, 112, 923.
(28) Fitchett, B. D.; Conboy, J. C. J. Phys. Chem. B 2004, 108, 20255.
(29) Raichlin, Y.; Millo, A.; Katzir, A. Phys. ReV. Lett. 2004, 93, 185703.
(30) Chen, Y.; Zhang, Y.-H.; Zhao, L.-H. Phys. Chem. Chem. Phys. 2004, 6, 537.
(31) Chakrabarty, D.; Chakraborty, A.; Seth, D.; Sarkar, N. J. Phys. Chem. A 2005, 109, 1764.
(32) Annapureddy, H. V. R.; Hu, Z.; Xia, J.; Margulis, C. J. Phys. Chem. B 2008, 112, 1770.
(33) Ngo, H. L.; LeVompte, K.; Hargens, L.; McEwen, A. M. Thermochim. Acta 2000, 357, 97.
(34) Fredlake, C. P.; Crosthwaite, J. M.; Heerts, D. G.; Aki, S. N. V.; Brennecke, J. F. J. Chem. Eng. Data 2004, 49, 954.
(35) Paulechka, Y. U.; Kabo, G. J.; Blokhin, A. V.; Shaplov, A. S.; Loainskaya, E. J.; Vygodskii, Y. S. J. Chem. Thermodyn. 2007, 39, 158.
(36) Nishikawa, K.; Wang, S.; Katayanagi, H.; Hayashi, S.; Hamaguchi, H.; Koga, Y.; Tozaki, K. J. Phys. Chem. B 2007, 111, 4894.
(37) Imai, Y.; Abe, H.; Goto, T.; Yoshimura, Y.; Michishita, Y.; Matsumoto, H. Chem. Phys. 2008, 352, 224.
(38) Nandi, N.; Bhattacharrya, K.; Bagchi, B. Chem. ReV. 2000, 100, 2013.
(39) Bhattacharyya, K. Acc. Chem. Res. 2003, 36, 95. JP902125F



ab@nda.ac.jp
Department of Materials Science and Engineering
National Defense Academy

Last Modified: April 1, 2009