Anisotropic local structure of decagonal quasicrystals by DAFS


Hiroshi Abe1, H. Saitoh2, H. Nakao3, K. Yamamoto4

1Department of Materials Science and Engineering, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
2Synchrotron Radiation Research Center, Japan Atomic Energy Research Institute, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
3Condensed Matter Research Center and Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
4Department of Physics, Faculty of Science, Nara Womenfs University, Nara 630-8263, Japan

Philos. Mag. 91 (2011) 2491.


Abstract
Diffraction anomalous fine structure (DAFS) analyses were performed on Al-Ni-Co (ANC) and Al-Ni-Fe (ANF) decagonal quasicrystals at the K-edges of Ni, Co and Fe. In ANC, an order-disorder phase transition with anisotropic atomic short-range order (SRO) is clearly recognizable at high temperature. During in situ observation, a zigzag correlation along the periodic direction developed during the early stage of ordering. Far above the phase transition temperature, this weak correlation along the periodic direction is independent of other correlations along the quasiperiodic one. In ANF, SRO of Fe developed along the quasiperiodic direction, although the local environment of Ni was almost random.



Fig. 1
Ni K-edge DAFS oscillations along the quasiperiodic direction of Al72Ni20Co8. DAFS oscillations are quite different at Tq and TDO.


Fig. 2
Fourier transform of DAFS along the quasiperiodic direction in Al72Ni20Co8.
Fig. 3.
Fourier transform of DAFS along the periodic direction in Al72Ni20Co8.
Fig. 4.
Schematic diagram of local atomic flip. A zigzag correlation appears along the periodic direction close to Tc, where a and c represent the quasiperiodic and periodic directions, respectively.
Fig. 5.
Fourier transform of DAFS along the quasiperiodic direction in Al72Ni18Fe10.

References
[1] S. Ritsch, C. Beeli, H.-U. Nissen, T. Godecke, M. Scheffer and R. Luck, Phil. Mag. Lett. 78 (1998) p.67.
[2] A.P. Tsai, A. Inoue and T. Masumoto, Mater. Trans. 30 (1989) p.150.
[3] E. Abe, K. Saitoh, H. Takakura, A.P. Tsai, P.J. Steinhardt and H-.C. Jeong, Phys. Rev.Lett. 84 (2000) p.4609.
[4] H. Takakura, A. Yamamoto and A.P. Tsai, Acta Crystallogr. A 57 (2001) p.576.
[5] K. Saitoh, K. Tsuda, M. Tanaka and A.P. Tsai, Jpn. J. Appl. Phys. 38 (1999) p.L671.
[6] K. Saitoh, M. Tanaka and A.P. Tsai, J. Electron Microsc. 50 (2001) p.197.
[7] R. Barabash, G.E. Ice and P.E.A. Turchi (eds.), Diffuse Scattering and the Fundamental Properties of Materials, Momentum Press, New Jersey, 2009.
[8]
H. Abe, H. Saitoh, T. Ueno, H. Nakao, Y. Matsuo, K. Ohshima and H. Matsumoto, J. Phys. Condens. Matter 15 (2003) p.1665.
[9]
H. Abe, K. Yamamoto, S. Matsuoka and Y. Matsuo, J. Phys. Condens. Matter 19 (2007) p.466201.
[10] A. Yamamoto, Acta Crystallogr. A 66 (2010) p.372.
[11] A. Yamamoto, Acta Crystallogr. A 66 (2010) p.384.
[12] O. Zaharko, C. Meneghini, A. Cervellino and E. Fischer, Eur. Phys. J. B 19 (2001) p.207.
[13] H. Stragier, J.O. Cross, J.J. Rehr, L.B. Sorensen, C.E. Bouldin and J.C. Woicik, Phys. Rev. Lett. 69 (1992) p.3064.
[14] B.E. Warren, X-ray Diffraction, Dover, New York, 1990.
[15]
H. Abe, J. Phys. Soc. Jpn. 76 (2007) p.094601.
[16] S. Hashimoto, Acta Crystallogr. A 56 (2000) p.85.
[17] O. Ersen, C. Ulhaq-Bouillet, V. Pierron-Bohnes, M.-H. Tuilier, D. Berling, P. Bertoncini, C. Pirri, M. Gailhanou and D. Thiaudiere, Appl. Phys. Lett. 81 (2002) p.2346.
[18] O. Ersen, V. Pierron-Bohnes, M.-H. Tuilier, C. Pirri and L. Khouchaf, Phys. Rev. B 67 (2003) p.094116.
[19] M. Newville, J. Synchrotron Radiat. 8 (2001) p.322.
[20] E. Abe, S.J. Pennycook and A.P. Tsai, Nature 421 (2003) p.347.
[21]
H. Abe, H. Saitoh, T. Ueno, H. Nakao, Y. Matsuo, K. Ohshima and H. Matsumoto, J. Phys. Soc. Jpn. 72 (2003) p.1828.
[22] K. Saitoh, T. Yokosawa, M. Tanaka and A.P. Tsai, J. Phys. Soc. Jpn. 73 (2004) p.1786.


Last Modified: April 1, 2011