Ultrasonic irradiation effect in the quenched benzene


Hiroshi Abe, Toru Sakurai, Haruyo Yoshizaki

Department of Materials Science and Engineering, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan


Journal of Non-Crystalline Solids 357 (2011) 3080-3083


Abstract
On slow cooling, a precursor phenomenon in supercooled benzene was probed by longitudinal absorption. On quenching, in-situ observation of ultrasonic measurements was carried out at the fixed temperature. Sequence of the transmitted waves was multiple scattered in quenched benzene. The dynamic ultrasound scattering is sensitive to the local strain and dynamic inhomogeneous fluctuations. The quenched benzene shows the maximum value of longitudinal absorption at incubation time, tinc. Crystal domain growth/coarsening is promoted by the ultrasonic irradiation at tincbt. In addition, tinc depends on the quenching temperature. Ultrasonic irradiation and quenching effects dominate the extraordinalnucleation and growth process of benzene in spite of simple and non-polar molecular liquid.



Fig. 1
Temperature dependence of (a) longitudinal absorption and (b) longitudinal wave velocity both on slowcooling and heating. Blue and red closed circles are corresponding to the points for cooling and heating process, respectively.


Fig. 2
Time development of longitudinal absorption in the quenched benzene, LQ, at 0 °C. LQ has the maximum value at the peculiar time, tinc.
Fig. 3.
Incubation time, tinc, as a function of quenching temperature. The waiting time is determined by the maximum values of longitudinal absorption (Fig. 2). tinc diverges close to Tm. The solid line shows the calculated incubation time regarded as the thermal activated process.
Fig. 4.
Time dependence of (a) longitudinal wave velocity, v, and (b) longitudinal absorption, LQ, at -20 °C on quenching process.
Fig. 5.
The exponent, a, of time at the early stage in longitudinal wave velocity on quenching temperature, Tq.

References
[1] K. Tohji, Y. Murata, Jpn. J. Appl. Phys. 21 (1982) 1199.
[2] M. Misawa, T. Fukunaga, J. Chem. Phys. 93 (1990) 3495.
[3] H.B. Burgi, S.C. Capelli, A.E. Goeta, J.A.K. Howard, M.A. Spackman, D.S. Yufit, Chem. Euro. J. 8 (2002) 3512.
[4] W.I.F. David, R.M. Ibberson, G.A. Jeffrey, J.R. Ruble, Physica. B. 180-181 (1992) 597.
[5] K. Ishii, H. Nakayama, T. Yoshida, H. Usui, K. Koyama, Bull. Chem. Soc. Jpn. 69 (1996) 2831.
[6] K. Ishii, H. Nakayama, M Kawahara, K. Koyama, K. Ando, J. Yokoyama, Chem. Phys. 199 (1995) 245.
[7] K. Ishii, H. Nakayama, Y. Yagasaki, K. Ando, M. Kawahara, Chem. Phys. Lett. 222 (1994) 117.
[8] K.T. Gillen, J.E. Griffiths, Chem. Phys. Lett. 17 (1972) 359.
[9] J. Dubochet, M. Adrian, T. Teixeira, C.M. Alba, R.K. Kadiyala, D.R. MacFarlane, C.A. Angell, J. Phys. Chem. 88 (1984) 6727.
[10] M. Ricciyz, S. Wiebel, P. Bartoliniy, A. Taschink, R. Torrek, Philos. Mag. 84 (2004) 1491.
[11]
H. Abe, I. Hori, T. Yatomi, M. Kikuchi, H. Matsumoto, H. Yoshizaki, Jpn. J. Appl. Phys. 42 (2003) 3552.
[12] L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, 4th Ed. Wiley, New York, 2000.
[13] T.F. Sun, J.A. Schouten, N.J. Trappeniers, S.N. Biswas, J. Chem. Thermo. 20 (1988) 1089.
[14] B.A. Oakley, G. Barber, T. Worden, Darrin Hanna, J. Phys. Chem. Ref. Data 32 (2003) 1501.
[15]
H. Abe, M. Ishibashi, K. Ohshima, T. Suzuki, W. Wuttig, K. Kakurai, Phys. Rev. B 50 (1994) 9020.
[16]
H. Abe, K. Ohshima, J. Phys. Soc. Jpn. 67 (1998) 2952.
[17] M.L. Cowan, I.P. Jones, J.H. Page, D.A. Weitz, Phys. Rev. E 65 (2002) 066605.


Last Modified: April 1, 2011