Deuteron substitution effects on crystallization in N, N-diethyl-N-methyl-N-
(2-methoxyethyl) ammonium tetrafluoroborate-water mixtures


Hiroshi Abea, Yusuke Imai a, Yukihiro Yoshimura b


aDepartment of Materials Science and Engineering, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
bDepartment of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan

Chemical Physics Letters 512 (2011) 204-207.


Abstract
We previously reported that amorphization was observed in a room temperature ionic liquid (RTIL)-6.7 mol% H2O mixture by simultaneous X-ray diffraction and differential scanning calorimetry measurements (Y. Imai, H. Abe, T. Goto, Y. Yoshimura, Y. Michishita, H. Matsumoto, Chem. Phys. 352 (2008) 224). Here, the RTIL is N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate, [DEME][BF4]. In this study, the phase behavior of the [DEME][BF4]-x mol% (1 - y)H2O  yD2O mixtures is examined systematically by fixing the water concentration at around 7 mol%. Intriguingly, amorphization was completely suppressed and crystallization occurred even when a small amount of D2O was added. The crystallization temperature strongly depends on D substitutions; however, the crystal structure is not influenced by the D2O effect.



Fig. 1
D2O dependence of crystallization temperature, Tc.


Fig. 2
Crystallization temperature, Tc as a function of enthalpy difference in liquid and crystal states, DH.
Fig. 3.
Rocking curves (transverse direction) as a function of D2O concentration at -80 C.
Fig. 4.
X-ray diffraction patterns (radial direction) at -80 C.

References
[1] J.D. Holbrey, K.R. Seddon, J. Chem. Soc., Dalton Trans. (1999) 2133.
[2] A. Triolo, O. Russina, H.-J. Bleif, E.D. Cola, J. Phys. Chem. B 111 (2007) 4641.
[3] O. Russina et al., J. Phys.: Condens. Matter 21 (2009) 424121.
[4] K. Shimizu, A.A.H. Padua, J.N.C. Lopes, J. Phys. Chem. B 114 (2010) 15635.
[5] T. Sato, G. Masuda, K. Takagi, Electrochim. Acta 49 (2004) 3603.
[6]
H. Abe, Y. Yoshimura, Y. Imai, T. Goto, H. Matsumoto, J. Mol. Liq. 150 (2009) 16.
[7] Y. Imai,
H. Abe, T. Goto, Y. Yoshimura, Y. Michishita, H. Matsumoto, Chem. Phys. 352 (2008) 224.
[8] Y. Imai,
H. Abe, T. Miyashita, T. Goto, H. Matsumoto, Y. Yoshimura, Chem. Phys. Lett. 486 (2010) 37.
[9] Y. Imai,
H. Abe, H. Matsumoto, O. Shimada, T. Hanasaki, Y. Yoshimura, J. Chem. Thermodyn. 43 (2010) 319.
[10] Y. Yoshimura, H.-S. Kimura, C. Okamoto, T. Miyashita, Y. Imai,
H. Abe, J. Chem. Thermodyn. 43 (2010) 410.
[11] Y. Imai,
H. Abe, Y. Yoshimura, J. Phys. Chem. B 113 (2009) 2013.
[12]
H. Abe, Y. Imai, T. Takekiyo, Y. Yoshimura, J. Phys. Chem. B 114 (2010) 2834.
[13] A. Kokorin (Ed.), Ionic Liquids: Theory, Properties, New Approaches, Intec, 2011 (Chap. 12).
[14] M. Aono et al., Metal. Mater. Trans. 42A (2011) 37.
[15] M.V. Kirov, G.S. Fanourgakis, S.S. Xantheas, Chem. Phys. Lett. 461 (2008) 180.


Last Modified: Nov. 1, 2011