ANOMALOUS MIXING STATE OF IONIC LIQUIDS BASED SOLUTIONS


H. Abe1, Y. Imai1 and Y. Yoshimura2


1Department of Materials Science and Engineering, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
2Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan

Proceedings of the 3rd International Congress on Green Process Engineering (2011) 50.


Abstract
Anomalous water behaviors are enhanced inside room temperature ionic liquid (RTIL). A variety of mixing states of RTIL-H2O mixtures were investigated using wide angle X-ray scattering (WAXS), small angle X-ray scattering (SAXS) and optical absorption in UV-vis region. The RTIL is N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate, [DEME][BF4]. By the systematic experiments, hierarchy structure in the mixtures appeared depending on water concentrations even at a liquid state. The specific water network developed over the medium-range in [DEME][BF4]-85~95 mol% H2O. All anomalies are probably induced by intrinsic hydrogen bonding of a water molecule.



Figure 1.
Phase diagrams of [DEME][BF4]-H2O mixtures


Figure 2.
A [DEME] cation and an [BF4] anion.
Figure 3.
Small angle scattering experiments.
Figure 4.
Simultaneous WAXS and DSC measurements.
Figure 5.
Density of [DEME][BF4]-H2O mixture.
Figure 6.
WAXS patterns at room temperature.
Figure 7.
H2O concentration dependences of Q position at the maximum intensity, Qmax of WAXS patterns (Fig. 5).
Figure 8.
H2O concentration dependence of intensity of prepeak position in WAXS. Q position is 2.1 (nm-1), which is provided by the allow in Fig. 5.
Figure 9.
SAXS intensities as a function of H2O concentrations.
Figure 10.
H2O concentration dependence of correlation length, , which is obtained by Ornstein Zernike
Figure 11.
Optical absorption spectra as a function of water concentration. The inset shows absorption spectrum of pure water.
Figure 12.
Water concentration dependence of the optical absorption coefficient at 4.7 eV.
Figure 13.
Hierarchy structure of [DEME][BF4]-H2O.

References
[1] K. R. Seddon, A. Stark, M. .J. Torres, Pure Appl. Chem. 72 (2000) 2275.
[2] M. J. Earle, K. R. Seddon, Pure Appl. Chem. 72 (2000) 1391.
[3] J. Tang, H. Tang, W. Sun, H. Plancher, M. Radosz, Y. Shen, Chem. Comm., (2005) 3325.
[4] T. Sato, G. Masuda, K. Takagi, Electrochim. Acta 49 (2004) 3603.
[5] O. Russina, A. Triolo, L. Gontrani, R. Caminiti, D. Xiao, L.G Hines Jr., R.A. Bartsch, E.L. Quitevis, N. Plechkova, K.R. Seddon, J. Phys.: Condens. Matter 21 (2009) 424121.
[6] W. Jiang, Y. Wang, G. A. Voth, J. Phys. Chem. B 111 (2007) 4812.
[7] Y. Imai,
H. Abe, T. Goto, Y. Yoshimura, Y. Michishita, H. Matsumoto, Chem. Phys. 352 (2008) 224.
[8]
H. Abe, Y. Yoshimura, Y. Imai, T. Goto, H. Matsumoto, J. Mol. Liq. 150 (2009) 16.
[9] Y. Imai,
H. Abe, Y. Yoshimura, J. Phys. Chem. B 113 (2009) 2013.
[10]
H. Abe, Y. Imai, T. Takekiyo, Y. Yoshimura, J. Phys. Chem. B 114 (2010) 2834.
[11] M. Aono, Y. Imai, Y. Ogata,
H. Abe, T. Goto, Y. Yoshimura, T. Takekiyo, H. Matsumoto, T. Arai, Metal. Mater. Trans. A 42 (2011) 37.
[12] A. Kokorin Ed., Ionic Liquids: Theory, Properties, New Approaches (InTech, 2011).
[13] D. A. Allen, R. A. Howe, N. D. Wood, W. S. Howells, J. Phys.: Condens. Matter 4 (1992) 1407.
[14] M. Salanne, C. Simon, P. Turq, P. A. Madden, J. Phys.: Condens. Matter 20 (2008) 332101.
[15] H. E. Stanley, Introduction to phase Transition and Critical Phenomena (Oxford University Press, 1971).
[16] M. Aono, Y. Imai,
H. Abe, H. Matsumoto, Y. Yoshimura, Thermochim. Acta, in press.
[17] X. Zhao, L. Hu, Y. Geng, Y. Wang, J. Mol. Catal. A 276 (2007) 168.
[18] A. Paul, P.K. Mandal, A. Samanta, Chem. Phys. Lett. 402 (2005) 375.
[19] S. Mahanta, R. B. Singh, S. Kar, N. Guchhait, Chem. Phys. 354 (2008) 118.


Last Modified: Mar. 1, 2012