2015/12/23 EventPilot Web

(3) Macromolecular:

193 - Inverse Laplace transform and principal component analysis of T_2 decays of polyisoprene rubbers filled with carbon black

View Session Detail

Masaki Tsunomura¹, em53027@nda.ac.jp, Atsushi Asano¹, Takahiro Ohkubo², Keiko Okushita³

Abstract Body: The 1 H T_2 relaxation decays of the un-cross-linked and the cross-linked cis-1,4-polyisoprene rubbers (PI) were investigated as a function of different quantities and kinds of carbon black (CB). First, we considered the ability of the CONTIN program 1) for the inverse Laplace transform (ILT) of the T_2 decays obtained from the PI/CB materials. When the ILT applied to a whole T_2 decay, it produced a monotonous T_2 distribution and the reproduced T_2 decay from the distribution was not in agreement with the observed one. This is because the observed T_2 decay consists of some Weibullian functions. We divided a T_2 decay into three or four sections and applied the ILT to the three or four divided T_2 decays. The respective obtained T_2 distributions showed the well reproducibility of the observed T_2 decay at the respective sections. We compared the estimated T_2 distribution with mechanical properties, filler gel quantity, and cross-link density. The obtained T_2 distribution had a relation to the cross-link density and a well correlation with the CB concentration and the CB classes. We also tried principal component analysis to the obtained T_2 distribution for visualizing the statistical difference of CB classes and to be clear the difference between the bound rubber and the filler gel.

1) Provencher, S. W. (1982) Comput. Phys. Commun., 27, 213-227 & 229-242.

¹ Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan; ² Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba, Japan;

³ Instrument Center, Institute for Molecular Science, Okazaki, Japan