
 241

9th International Conference on Numerical Ship Hydrodynamics 
Ann Arbor, Michigan, August 5-8, 2007 

 
 
 

 
 

A Hybrid Technique Using Particle and Boundary-Element 
Methods for Wave-Body Interaction Problems 

 
 

Makoto Sueyoshi1, Hajime Kihara2 and Masashi Kashiwagi1  
(1Kyushu University, Japan, 2National Defense Academy, Japan) 

 
 
 
ABSTRACT 
 
In order to expand applicability of particle methods to 
various practical problems, a hybrid computation 
method for wave-body interaction problems is 
developed. The method divides a computation domain 
into two regions.  One is the nonlinear inner region 
where a particle method is applied. The other is the 
linear outer region where a boundary element method 
is applied. These two regions are connected with a 
boundary called the moving matching boundary. Some 
simple wave channel problems are computed and the 
results are validated through a comparison with 
analytical solution and demonstration of numerical 
simulations for wave-body interaction problems is 
made. 
 
 
INTRODUCTION 
 
In the field of marine engineering problem, there are a 
number of nonlinear wave-body interaction problems 
which are still difficult for numerical computations. 
The particle method is one of the suitable numerical 
methods for such nonlinear free-surface problems. 
Generally speaking, however, the particle method 
consumes a large amount of computation time than 
other numerical techniques using traditional mesh. 
Therefore numerical techniques to reduce the 
computation time are strongly required for simulations 
with higher spatial resolution.  

In this paper, a hybrid technique using both a 
particle method and a boundary element method 
(BEM), is proposed. The idea in this paper was 
inspired by the hybrid method proposed by Iafrati et al. 
(2003), which is a combination of a CFD scheme using 
conventional grids and the BEM for potential-flow 

free-surface problems. However, since we are 
concerned with strongly nonlinear problems, use of the 
particle method in place of CFD methods using grids is 
very fascinating and advantageous. Furthermore, the 
BEM enables us to carry out large-scale computation 
for practical problems. Therefore in this paper we 
investigated some special treatments for the 
development of a new hybrid method using the particle 
method. 
 
 
MPS METHOD 
 
The MPS (Moving Particle Semi-implicit) method was 
introduced by Koshizuka et al. (1996) in the field of 
nuclear engineering to simulate extreme deformation of 
fluid surfaces such as vapor explosion. They applied 
the MPS method to various problems in not only 
nuclear but also other engineering fields; for instance in 
coastal engineering (Koshizuka et al., 1998). 

The MPS method is a fully Lagrangian method 
which is similar to SPH (Smoothed Particle 
Hydrodynamics) method (Monaghan, 1994). The 
differences between SPH and MPS exist in the 
formulation of spatial discretization and in the 
algorithm of time integration. In addition, the MPS 
method is devised for treating incompressible fluid 
with relatively large time step size 

Figure 1 shows the snapshots of numerical and 
experimental results of violent sloshing in a rectangular 
tank. The water depth is very shallow and the tank is 
oscillated in pure sway. We can see that numerical 
results simulate successfully complicated structure of 
the free surface with turning over and breaking. In 
Figure 2, time evolutions of the impulsive pressure 
acting on the vertical wall on the right-hand side are 
shown. In this simulation, a modified MPS method to 



 

suppress numerical oscillation is applied, and computed 
results are in good agreement with the experimental 
results. 

The MPS method is useful for not only sloshing but 
also wave-body interaction problems. Figure 3 shows 
snapshots of the flow around a box-shaped floating 

body in waves. In this case, the freeboard of the body is 
very small in order for the shipping water to occur. So 
the incident waves easily flow onto the deck. Under 
such severe condition with large deformation of the 
free surface, the numerical computation by the MPS 
method successfully reproduces the profile of the free 
surface. 

Figure 4 shows time evolutions of the motions of 
the floating body. In this case, the effects of the water 
on deck appear as a shift of the average of harmonic 
motion in roll and heave. In these results, we can see 
good agreement in not only qualitative tendency but 

Experiment.                      MPS method
 
Figure 1: Snapshots of free surface profiles in violent
sloshing in shallow water. Oscillation is pure sway with
amplitude equal to 5cm. 
 

P(
Pa

)

 t / T

 Cal. ( )
 Exp. (Kishev and Hu)

 T = 0.8 (sec.)

5 6 7 8-200
0

200
400
600
800

P(
Pa

)

 t / T

  T = 1.3 (sec.)

5 6 7 8
0

500
1000
1500
2000
2500

P(
Pa

)

 t / T

 T = 1.7 (sec.)

5 6 7 8

0

500

1000

Modified MPS

Figure 2: Comparison of the pressure time evolutions
between experimental and numerical results. 
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Figure 3: Snapshots of free surface profiles around a 
box-shaped floating body in waves. 
 



 

also quantitative accuracy, except that the drift motion 
shows some discrepancy. 
 
NUMERICAL IMPLEMENTATION OF MPS 
METHOD 
 
In the description to follow, a subscript to variables is 
used to distinguish each particle. Although the 
subscript does not imply the connectivity relationship 
in particle method, it looks similar to the expression of 
node points of some regular grid systems. The MPS 
method uses some unique formulations for spatial 
discretization. The formulation is based on a physical 
model of the partial differential operator and statistics. 
The gradient of a scalar quantity Φ is described as 
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where ri is the position vector of particle i; rij =|rj-ri| is 
the distance between particle i and j; d is the number of 
spatial dimension; and w(r) is the weight function of 
the distance r. For practical computations, Koshizuka 
introduced the shape of w(r) of the form 
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where r0 is a cut-off distance (Figure 5 shows the 
shape.) Therefore the effective area related to one 
particle is limited. Equation (1) means the weighted 
average of inclination of Φ  between particle i and j.  

The diffusion of a scalar quantity Φ is described as 
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where λ is the parameter to adjust a distributed quantity 
to an analytical result and given as 
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Equation (3) means that the quantity distributed from 
particle i to j is equal to that from particle j to i. 

The combination of equations (1) and (3) may 
discretize the governing equations for the fluid motion 
described by partial differential equations. To begin 
with, the principle of momentum conservation gives 
the Navier-Stokes equation 
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where t is time; u the velocity vector; ρ the density of 
fluid; g the vector of gravitational acceleration; and ν 
the kinematic viscosity.  

Equation (5) is solved in conjunction with the 
continuity equation by a semi-implicit velocity-
pressure coupling algorithm similar to the fractional 
step method. The first step is to compute the temporary 
velocity and position vectors of particles. They are 
described as 
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where ∆t is the increment of time. The viscosity term 
may be discretized by a combination of equation (3), 
and thus given as 
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The second step is to compute the particle number 
density that is used to compute the pressure distribution. 
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Figure 5: Weight function w(r). 
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Figure 4: Comparison of time evolutions of the body
motions in waves between experimental and numerical
results. 
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Figure 5: Shape of weight function w(r). 
 



 

The particle number density is in proportion to fluid 
density and defined as 

∑
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In the MPS method, the particle number density is also 
used to check whether or not the particle is on the free 
surface in a computational domain.  

Koshizuka introduced Poisson’s equation for the 
pressure at next time step. It is given as 
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where Pi is the pressure of particle i; n0 is a constant 
value of the particle number density which is given at 
initial time step. A discretized form of equation (10) 
becomes a linear system of simultaneous equations. 
The resultant coefficient matrix is sparse and 
symmetric because w(rij)=w(rji) and the weight function 
w has cut-off distance r0. This linear system can be 
solved with an iterative solver efficiently. 

Finally, the velocity and position vectors are 
corrected with the pressure gradient. The calculation of 
these is performed as 
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 The calculation sequence mentioned above is 
shown in Figure 6. In this sequence, solid arrows 
indicate a flow of each activity and dotted arrows 
indicate a relation of data input and output. 
 
 
HYBRID METHOD 
 
In this paper, a hybrid computation method with a 
domain decomposition technique is applied to wave 
problems. Figure 7 shows a sketch of the domain 
decomposition concept for wave problems. In the upper 
region Ω1, a MPS method is used to compute the flow 
field (which is referred to as the MPS solver). In the 
lower region Ω2 , the flow field is computed by a BEM 
(which is referred to as the BEM solver). These two 
domains interface each other through a boundary ΓΙ. 
The MPS solver gives the potential values on ΓΙ to the 
BEM solver, while the BEM solver gives the velocity 
components on ΓΙ to the MPS solver. 

Figure 8 shows a sketch of the arrangement of 
particles in the upper region and node points on 
boundaries surrounding the lower region. 

Since the MPS solver is by a Lagrangian approach, 
the interface boundary ΓΙ moves and deforms its shape 
as time proceeds. Correspondingly, in the BEM solver, 
the influence coefficients must be computed every time 
step. This implies that much consumption of 

computation time is required and may lead to the 
numerical instability due to the deformation of mesh 
system on the interface boundary. In such a situation, 
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Figure 6: Sequence of time marching procedure of the MPS 
method. 
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Figure 7: Sketch of hybrid method concept with domain 
decomposition technique 



 

we cannot take advantage of the domain decomposition 
approach with the BEM solver to the fullest extent. 
Therefore the present method uses two boundaries as 
the interface ΓI to keep such advantage, one is a fixed 
boundary for the BEM solver and the other is a moving 
boundary for the MPS solver. Although the moving 
boundary has some perturbation displacement from the 
fixed one in wave problems, it is considered small in 
the water and we can apply the linearization of the 
boundary condition as is explained later.  

Computational information through the interface 
boundaries is exchanged between the MPS solver and 
the BEM solver. In the MPS solver, the velocity at the 
boundary particles is given as the result of interpolated 
value from the normal velocity on the fixed boundary. 
On the other hand, in the BEM solver, the potential 
value at the node points is given as the result of 
numerical integration of the pressure at the boundary 
moving particles. We call the interface system between 
the MPS solver and BEM solver as the moving 
matching boundary.  

Figure 9 shows a sketch of the coordinate system of 
the problem. The sequence at each time step is 
described as follows: 
• The MPS solver is carried out under the boundary 

condition of known velocity components at 
boundary particles on the moving boundary. 

• The velocity potential on the fixed boundary is 
calculated from integration of the pressure at 
particles on the moving boundary. The integration 
is described as  
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where Pi is the pressure at particle i and zi is the 
vertical position of particle i. The potential values 
on the fixed boundary are approximately obtained 
by using equation (13). Although the pressure Pi 
computed by the MPS solver, includes the static 
and dynamic components, the potential value as the 
boundary condition for the BEM solver should be 
determined by using the integration of dynamic 
pressure. Additionally, the change of the static 
pressure due to the moving boundary needs to be 
corrected. Since the displacement of the moving 
boundary is small in the water, the quadratic term of 
the velocity is negligible. This is based on the same 
idea as the linearization of the free surface 
condition with the perturbation theory. We actually 
confirm that such a term hardly influences the 
integrated values. As a result, the term is excluded 

from the integrand in equation (13) in the present 
study. 

• The BEM solver is carried out under the boundary 
condition of the known velocity potential on the 
fixed boundary. The governing equation in the 
lower region is given as 

02 =∇ Φ       in Ω2 .            (14) 
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Figure 8: Sketch of arrangements of particles and node 
points of potential solver.   
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Figure 9: Sketch of co-ordinate system.   
 



 

On the solid boundariesΓ solid (bottom and side-
walls), the flux of the velocity potential is zero. It is 
described as 

0=
∂
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On the fixed boundary as the interface, the velocity 
potential is given by equation (13) and thus 

ΦΦ =       on ΓI fixed.            (16) 
• The velocity components are calculated on the fixed 

boundary by the BEM solver and interpolated to 
each particle on the moving boundary as the known 
values for the MPS solver at the next time step. 

 
The above-mentioned sequence is shown in Figure 

10. The boundary value problem that is formulated by 

equations (14) (15) (16) can be rewritten in the 
following integral equation.  

∫

∫

∂
∂

+

∂
∂

−=

Γ

Γ

Φ

ΦΦ

)(),(
)(

)(
),(

)()()(

rrr
r

r
rr

rrr

dsG
n

ds
n

G
C

P

P
PP

 (17) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
=

rr
rr

P
PG 1ln

2
1),(
π

          (18) 

 
where rP, r are any points on the boundaryΓ (=ΓI fixed 

+Γ solid ) surrounding region Ω 2 and C(rP) is the 
interior angle at the point rP on it. G(rP, r) is the Green 
function satisfying the governing equation (14).  

Conventional linear elements are used for the 

Set initial values

Calculate temporal values

Calculate particle number
density

Calculate pressure

Calculate pressure gradient

Calculate values of next step

[t < tend]
[t >= tend]

**, ur

11, ++ nn ur

1+∇ nP

00, ur

nn ur ,

1+nP

*n

Update time step

Judge Free Surface
fp

f

Calculate product of
matrix and vector

Calculate Potential on
Boundary

IΦ

Iu

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

t
dtgz

P
0I ρ

Φ

Calculate the influence
coefficients

]0[ =n
]0[ ≠n

II ,
,,

HG
HG

 
 
Figure 10: Sequence of time marching procedure of the present method with a domain decomposition approach. 
 



 

discretization of the boundary in equation (17). Here 
we introduce the description by the vector Φ as the 
potential values of arbitrary nodes and the matrices H 
and G as the influence coefficients composed of the 
integrals on each element. The linear system equation 
to be solved are given as 
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where the subscript symbol I denotes the quantity 
concerning the interface, and the overline symbol 
means it is a known value. 

In the computational sequence, the computation of 
the influence coefficients is carried out only at a first 
time-step. It means that the larger the lower region is, 

the faster the computation becomes. 
The pressure computed by the MPS method includes 

numerical oscillation in both of time and spatial domain. 
The velocity potential, which is computed with the 
pressure, also includes similar numerical oscillation. So 
there is a possibility that it brings undesirable results 
when such potential values are input as the boundary 
condition of the BEM solver, for the solutions of the 
BEM solver sensitively react to such oscillatory inputs. 
However, as the potential values are computed by 
numerical integration scheme with respect to time, the 
oscillation is suppressed to some extent. Moreover, 
from a viewpoint of robust computing, the velocity 
potential is spatially smoothed by a simple running 
average technique at each time step. In following 
numerical results, the strength of the smoother is 
empirically determined to avoid numerical instability. 
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Figure 11: Sketch of two-dimensional wave channel with a plunger type wavemaker. 
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Figure 12: Snapshots of particle arrangements in upper region. Period of wavemaker motion is 1.0sec. and the amplitude  
is 30mm. 



 

WAVE CHANNEL PROBLEM 
 
In order to evaluate effectiveness of the present method, 
the wave generation in a two-dimensional wave 
channel is simulated. The schematic description of the 
arrangement is shown in Figure 11. 

The computational domain is divided into the upper 
and lower regions by a horizontal line at z d= − . The 
flow in the upper region is computed by the MPS 
method. It includes the free surface and a wave maker. 
The bottom of the upper region is an array of moving 
particles as a matching boundary where velocity 
components are given. The lower region is treated by 
the BEM solver. It consists of the bottom of wave 
channel and the upper boundary fixed in space as a 
matching boundary on which the value of the velocity 
potential is given.  

The wave channel is enclosed at both longitudinal 
ends with fixed vertical walls. In the numerical 
simulation shown below, these vertical walls at both 
ends move in vertical direction to avoid the leak of 
fluid particles from the corners between the vertical 
walls and the moving matching boundary.  

The plunger type wavemaker generates the waves 
by a forced oscillation in the vertical direction. The 
motion of the wavemaker is simple sinusoidal with 
transient increase in amplitude at the beginning.  

In the water-wave problem, the fluid motion far 
below the free surface is usually moderate. If there is a 
horizontal line which moves with the fluid flow, 
deformation of the line (i.e. the motion of the particle 
array on the moving matching boundary) is relatively 
smaller than that of the free surface in the upper region. 
Therefore we assume that the flow field around the 

Table 1: Comparison of wavelength. 
 

Linear
Solution

Hybrid
Method

T: 1.0sec.
h: 0.15m
d: 0.15m
（Fixed bottom）

T: 1.0sec.
h: 0.5m
d: 0.15m

T: 0.7sec.
h: 0.5m
d: 0.15m

1.09m

1.51m

0.76m

1.08m

1.49m

0.77m

4.0sec.

4.5sec.

5.0sec.

7.5sec.

10.0sec.

Figure 13: Comparison of free surface profiles between the hybrid method and a fully nonlinear BEM. 
 



 

matching boundary can be treated as a linear problem. 
Under this assumption, motions of the particles on the 
moving matching boundary are restricted to be in the 
vertical direction only.  

The numerical examples are shown in Figure 12; 
these are snapshots of the distribution of particles in the 
upper region. In this simulation, the distance between 
the calm water surface and the matching boundary at 
rest is set to 150 mm, and the total number of particles 
in the upper region is 31,204. The minimum distance 
between particles at initial time step is 5.0 mm. 
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Figure 14: Comparison of spatial distribution of velocity
potential between the hybrid method and a fully nonlinear
BEM. 
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Figure 15: Time evolution of calculated velocity potential.
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Figure 16: Time evolution of calculated velocity potential
in the case: d=25(cm). 
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Figure 17: Time evolution of calculated velocity potential
in higher spatial resolution case. Total number of particles is
122,215. 



 

The wavelength of generated wave is compared 
with the analytical value predicted by the dispersion 
relation for a linear progressive wave in Table 1. Here, 
the wavelength by the present method is measured as 
the distance between zero crossing points. The results 
show the capability of the present method for deep-
water waves. 

Figure 13 shows a comparison of the free-surface 
profiles computed by the present hybrid method and a 
time-domain fully nonlinear boundary element method 
using moving grids on the free surface. The results of 
the present method show the same tendency in the free-
surface profiles at each time step.  

In Figure 14, the spatial distribution of the value of 
the velocity potential on the moving matching 
boundary is plotted for both results of the present 
hybrid method and fully nonlinear boundary-element 
method. We can see that the absolute value of the 
velocity potential is much different. The time evolution 
of the calculated velocity potential at five different 
points on the moving matching boundary is shown in 
Figure 15. The time evolution of the velocity potential 
is almost linear in the time. The reason of difference in 
the comparison of Figure 14 may be attributed to that 
the present particle method cannot compute the static 
pressure accurately. Difference in the static pressure is 
accumulated in the process of integration of the 
pressure. This conjecture might be supported by the 
following two figures. Figure 16 shows the time 
evolution of the velocity potential for the case of 

250d = mm in which the matching boundary is set at a 
deeper position. The linear trend is almost the same as 
the previous case. When position of the moving 
boundary was deeper, the displacement became smaller 
and the phenomena could be considered as linear one. 
Figure 17 shows the result of higher spatial resolution 
using 122,215 particles. In general, computations with 
higher spatial resolution provide more accurate results 
of the pressure. The slope of the line in Figure 17 is 
smaller than the previous two cases. In the process of 
the BEM solver, the absolute value of the velocity 
potential is not so important, because the flow field is 
calculated as the gradient of the velocity potential. 
Therefore the essential factor is relative spatial 
distribution of the velocity potential. In this sense, the 
results of the present hybrid method show the same 
qualitative tendency as do the results of the BEM. 
 
 
WAVE-BODY INTERACTION PROBLEM 
 
The present hybrid method has capability to treat some 
complicated floating body problems. The MPS method 
for the upper region is numerically robust and stable 
even if the free surface is largely deformed or the 
motions of bodies are extremely large. In order to 

demonstrate capability of the present method, some 
computations are carried out on such a wave-body 
interaction problem and compared with measured 
results. Figure 18 shows a sketch of setup for the 
numerical simulation. In a two-dimensional channel, a 
rectangular shaped floating body with small freeboard 
is moored with a carriage. The carriage allows the 
floating body to move in roll, heave and sway. In 
swaying direction, the motion of the carriage is weekly 
restricted with a soft spring in order to prevent large 
drift displacement. In numerical simulations, the 
mooring mechanism is taken into account, but the 
friction is ignored. The total number of particles for the 
numerical simulation is 99,966 and the minimum 
distance between particles is 5.0 mm. To avoid 
penetration of the plunging motion of the wavemaker 
to the moving matching boundary, the depth of the 
matching boundary is taken at 250d = mm. 
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Figure 18: Sketch of experimental set up for floating body 
problem in two-dimensional wave channel. 
 



 

Figure 19 shows snapshots of the whole 
computational domain. Figure 20 shows a comparison 
of snapshots of the free surface profile and the body 
between experimental and numerical results. 
Experimental results were taken using a high-speed 
digital camera, and for the numerical results the 
arrangement of particles in the upper region is shown. 
We can see that water flows onto the left side deck in 
both numerical and experimental results. 

In Figure 21, time evolutions of the motions of 
floating body are shown. In this case, computed 
amplitudes are smaller than experimental ones in all 
modes of motion. The phase of each mode is not so bad. 
It may suggest that the incident-wave amplitude in the 
numerical simulation is smaller than that in the 
experiment. This tendency is sometimes observed also 
in numerical simulations only with the MPS method. 
One reason why the heave amplitude is much smaller 
than the experiment is that the motion itself is too small 
compared to the spatial resolution in the numerical 
computation. 
 
 
CONCLUSIONS 
 
In this paper, a new hybrid method with a domain 
decomposition approach was introduced, combining 
the MPS method for the upper region including the free 
surface and a floating body and the BEM for the lower 
region. Each method exchanges the information 
through the moving matching boundary by providing 
boundary conditions necessary for the other method at 
every time step. The validity of the method is checked 
for the wave generation problem through comparison 
with computed results by a fully nonlinear BEM. 
Finally the applicability of the method to the wave-
body interaction problem under the effect of water on 
deck is demonstrated. Since the MPS method can be 
applied to extremely nonlinear wave-body interaction 
problems, the new hybrid method is expected to be 

used in the future for 3-D large-scale problems of a 
practical ship oscillating by large amplitude waves.  
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Figure 19: Snapshot of profile of computational domain. 
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Figure 20: Comparison of profile of free surface and
floating body. 
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Figure 21: Time evolution of motions of floating body.
Period of wave generation is 1.0sec. 
 
 


