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Abstract

This note extends the Boussinesq approximation to a two-component fluid, in a
manner consistent with the conservation law of mass. It is shown that the governing
equations for a two-component fluid can systematically be formulated, with the aid
of the conservation law of energy, on the following assumption: the density of the
fluid is a function solely of the concentration of one component, but the thermal
expansion coefficient of the fluid does not vanish. It is also shown that the velocity
of the fluid cannot in general be solenoidal under the extended approximation.

1. Introduction

The Boussinesq approximation is originally an approximation for a single-component
fluid with a nonuniform temperature distribution in a uniform gravitational field. It is,
however, extended in geophysical fluid dynamics so that the motion of a two-component
fluid such as seawater can be dealt with (see e.g. Pedlosky 1987, § 1.4; Cushman-Roisin
& Beckers 2011, § 3.7). Though this extended approximation is now widely used, it has
the fatal defect that the equation of continuity does not hold; this implies not only that
the conservation law of mass is violated, but also that the velocity of the fluid is not the
momentum per unit mass of the fluid (see Maruyama 2014).

Hence the object of this note is to extend the Boussinesq approximation in a manner
consistent with the conservation law of mass, i.e. in such a manner that the equation of
continuity is satisfied. It is shown that, with the aid of the conservation law of energy,
we can systematically formulate the governing equations for a two-component fluid.

2. Governing equations for a two-component fluid

We consider the motion in a uniform gravitational field of a fluid consisting of two
components, A and B, and occupying a fixed domain Ω. In this domain, we set up a
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system of rectangular coordinates (x1, x2, x3) with the x3-axis taken vertically upwards.
The unit vectors in the positive x1-, x2-, and x3-directions are respectively denoted by
e1, e2, and e3. Latin indices are used in the following to represent the numbers 1, 2,
and 3; the summation convention is also implied.

2.1. Basic assumptions

We first assume that the temperature T of the fluid can be written in the form

T = T0 + T ′, (2.1)

where T0 is a constant reference temperature, and T ′ the small deviation from T0. We
also write the pressure p of the fluid as follows:

p = p0 + p′. (2.2)

Here p′ denotes the small perturbation from the hydrostatic pressure p0 defined by

p0 = −ρ0gx3 + constant, (2.3)

in which ρ0 is a constant reference density, and g the acceleration due to gravity.
Let c denote the concentration of component A, i.e. the ratio of the mass of A to the

total mass of the fluid in a given volume element. We assume that c can be written as

c = c0 + c′, (2.4)

where c0 is a constant reference concentration, and c′ the small deviation from c0.
Next, let ρ denote the density of the fluid and let βc = ρ−1(∂ρ/∂c)T,p. It is supposed

that ρ is given by
ρ = ρ0 + ρ0βc0c

′, (2.5)

where βc0 = βc(T0, p0, c0). We assume that βc0 may be regarded as constant.
According to the above expression, ρ is a function only of c′. It is assumed, however,

that the thermal expansion coefficient β of the fluid does not vanish:

β = v−1(∂v/∂T )p,c 6= 0, (2.6)

where v = ρ−1 denotes the specific volume of the fluid.

2.2. Concentration equation

The equation for the rate of change of the concentration c of component A is given
by (see Landau & Lifshitz 1987, § 58)

ρDc/Dt = −∇ · i. (2.7)

Here the symbol D/Dt denotes the material derivative, and i the diffusion flux density
of component A. It is to be noted that the total flux density of component A and that
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of component B are given by ρcu + i and ρ(1− c)u− i, respectively. Substituting (2.4)
and (2.5) into the left-hand side of (2.7), we obtain

ρ0Dc
′/Dt = −∇ · i, (2.8)

where a term of the second order in c′ has been omitted.
On the other hand, denoting by κc the diffusion coefficient of component A in B, we

can write i in the following form (see Landau & Lifshitz 1987, § 59):

i = −ρκc {∇c+ (νT /T )∇T + (νp/p)∇p} . (2.9)

Here νT and νp are respectively the thermodiffusion and barodiffusion ratios; they are
known to vanish as c→ 0 or c→ 1. Hence, for simplicity, we assume that

c0 � 1. (2.10)

The last two terms in the braces in (2.9) can then be omitted; the substitution of (2.4)
and (2.5) into (2.9) yields, to the first order of small quantities,

i = −ρ0κc0∇c′. (2.11)

Here κc0 denotes κc evaluated at T = T0, p = p0, and c = c0 in view of the smallness of
T ′, p′, and c′; terms above the first order in primed variables have thus been ignored. It
is to be noted that κc0 may in general depend upon x3 through p0.

Finally, from (2.8) and (2.11), we obtain

Dc′/Dt = ∇ · (κc0∇c′). (2.12)

This is the concentration equation for the two-component fluid.

2.3. Equation of continuity

Now, the velocity u of the fluid satisfies the equation of continuity

ρ−1Dρ/Dt+∇ · u = 0. (2.13)

Using (2.5) and neglecting terms above the first order in c′, we can rewrite (2.13) as

∇ · u = −βc0Dc′/Dt. (2.14)

The substitution of (2.12) allows us to further rewrite (2.14) as

∇ · u = −βc0∇ · (κc0∇c′). (2.15)

This is the equation of continuity for the two-component fluid: this equation guarantees
that u is the momentum per unit mass of the fluid (see Maruyama 2014).
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2.4. Equation of motion

When the pressure is given by (2.2), the equation of motion takes the form

ρ
Du

Dt
= −∇p′ + ∂τij

∂xj
ei − (ρ− ρ0)ge3, (2.16)

where τij are the components of the viscous stress tensor. If we simply substitute (2.5)
into the last term of (2.16), the following equation is obtained:

ρ
Du

Dt
= −∇p′ + ∂τij

∂xj
ei − ρ0βc0c

′ge3. (2.17)

As explained below, however, this equation must contain an additional term in order to
be consistent with the conservation law of energy.

Let e denote the specific internal energy of the fluid. We assume, for simplicity, that
the component of u normal to the boundary Σ of the domain Ω containing the fluid is
zero. The conservation law of energy for the fluid is then expressed as follows:

d

dt

∫
Ω
ρ
(

1
2 |u|

2 + gx3 + e
)
dV =

∫
Σ
uiτijnjdS −

∫
Σ
q · ndS, (2.18)

where n denotes the unit outward normal on Σ; ui and nj are the components of u and
n, respectively; q is the heat flux density due to thermal conduction. This expression
states that the total energy of the fluid changes owing to the work done by the viscous
force acting on Σ and owing to the heat transfer across Σ.

On the other hand, concerning the potential energy of the fluid, we have

d

dt

∫
Ω
ρgx3dV =

∫
Ω

(ρ0gu3 + ρ0βc0c
′gu3)dV, (2.19)

where (2.5) has been used on the right-hand side.
We can also find the equation for the rate of change of the internal energy of the fluid

from the general equation of heat transfer (see Landau & Lifshitz 1987, § 58)

ρT
Ds

Dt
= τij

∂ui
∂xj
−∇ · q + µ∇ · i, (2.20)

in which s and µ are respectively the specific entropy and the chemical potential of the
fluid; µ is so defined that it satisfies the thermodynamic relation

de = Tds− pdv + µdc. (2.21)

In the following, we derive the desired equation after Maruyama (2014).
When s is regarded as a function of T , p, and c, we can express Ds/Dt as follows:

Ds

Dt
=

(
∂s

∂T

)
p,c

DT

Dt
+

(
∂s

∂p

)
T,c

Dp

Dt
+

(
∂s

∂c

)
T,p

Dc

Dt
. (2.22)
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Here, using thermodynamic relations, the coefficients can be written as(
∂s

∂T

)
p,c

=
cp
T
,

(
∂s

∂p

)
T,c

= −
(
∂v

∂T

)
p,c

= −vβ,
(
∂s

∂c

)
T,p

= −
(
∂µ

∂T

)
p,c

, (2.23)

where cp is the specific heat at constant pressure, and (∂µ/∂T )p,c is henceforth denoted
by Λ for simplicity of notation. Since T , p and c deviate only slightly from T0, p0, and
c0, these coefficients may be evaluated at T = T0, p = p0, and c = c0. We then obtain,
using (2.1), (2.2), and (2.4),

Ds

Dt
=
cp0

T0

DT ′

Dt
− v0β0

(
Dp0

Dt
+
Dp′

Dt

)
− Λ0

Dc′

Dt
, (2.24)

in which v0 = ρ−1
0 ; we have also introduced the notation

cp0 = cp(T0, p0, c0), β0 = β(T0, p0, c0), Λ0 = Λ(T0, p0, c0). (2.25)

In a similar fashion, when s is regarded as a function of e, v, and c, we get

Ds

Dt
=

1

T0

De

Dt
+
p0

T0

Dv

Dt
− µ0

T0

Dc

Dt
, (2.26)

where µ0 stands for µ evaluated at T = T0, p = p0, and c = c0:

µ0 = µ(T0, p0, c0). (2.27)

Note that µ0, and also cp0, β0, and Λ0, may in general depend upon x3 through p0.
We can now rewrite the term on the left-hand side of (2.20) as follows:

ρT
Ds

Dt
= ρT0

Ds

Dt
+ ρT ′

Ds

Dt

= ρ

{
De

Dt
+ p0

Dv

Dt
− µ0

Dc

Dt

}
+ ρT ′

{
cp0

T0

DT ′

Dt
− v0β0

(
Dp0

Dt
+
Dp′

Dt

)
− Λ0

Dc′

Dt

}
. (2.28)

However, since ρDv/Dt = ∇ · u, ρDc/Dt = −∇ · i, and Dp0/Dt = −ρ0gu3, we have

ρT
Ds

Dt
= ρ

De

Dt
+ p0∇ · u + µ0∇ · i + ρ0β0T

′gu3, (2.29)

where terms above the first order in primed variables have been neglected. Substituting
this into (2.20), we get, to the first order of primed variables,

ρ
De

Dt
= τij

∂ui
∂xj
−∇ · q − p0∇ · u− ρ0β0T

′gu3. (2.30)

We note here that ρDe/Dt = ∂(ρe)/∂t+∇ · (ρeu) and that

−p0∇ · u = −∇ · (p0u) + u · ∇p0 = −∇ · (p0u)− ρ0gu3. (2.31)
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Thus, integrating (2.30) over the domain Ω, we finally find

d

dt

∫
Ω
ρedV =

∫
Ω
τij
∂ui
∂xj

dV −
∫

Σ
q · ndS −

∫
Ω

(ρ0gu3 + ρ0β0T
′gu3)dV. (2.32)

This is the desired equation for the rate of change of the internal energy of the fluid.
As a consequence, subtracting (2.19) and (2.32) from (2.18), we obtain the following

equation for the rate of change of the kinetic energy of the fluid:

d

dt

∫
Ω

1
2ρ|u|

2dV =

∫
Σ
uiτijnjdS−

∫
Ω
τij
∂ui
∂xj

dV +

∫
Ω

(ρ0β0T
′gu3−ρ0βc0c

′gu3)dV. (2.33)

This equation must also be derived from the equation of motion if terms above the first
order in primed variables are ignored in the derivation; this requires that (2.17) should
contain the term

ρ0β0T
′ge3. (2.34)

This term represents the buoyancy force due to changes in temperature: the force arises
as a result of the conversion between kinetic and internal energy. In contrast, the term
−ρ0βc0c

′ge3 in (2.17) represents the buoyancy force due to changes in concentration: the
force is responsible for the conversion between kinetic and potential energy.

We have thus obtained the following equation:

ρ
Du

Dt
= −∇p′ + ∂τij

∂xj
ei + ρ0β0T

′ge3 − ρ0βc0c
′ge3. (2.35)

This equation, to the first order of primed variables, is equivalent to

ρ0
Du

Dt
= −∇p′ + (1− βc0c′)

∂τij
∂xj

ei + ρ0β0T
′ge3 − ρ0βc0c

′ge3. (2.36)

Here the factor (1− βc0c′) in the viscous term may usually be identified with unity. We
take (2.36) as the equation of motion for the two-component fluid. In this equation, τij
are given, for example, by (see Landau & Lifshitz 1987, § 15)

τij = η

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
+ ζδij

∂uk
∂xk

, (2.37)

in which the symbol δij denotes the Kronecker delta; η and ζ are the dynamic viscosity
and the second viscosity, respectively.

2.5. Temperature equation

Comparing (2.24) and (2.26), we observe that, to the first order of primed variables,

ρ
De

Dt
= ρ0cp0

DT ′

Dt
−
{

(1 + βc0c
′)β0T0

Dp0

Dt
+ β0T0

Dp′

Dt

}
+ (T0Λ0 − µ0)∇ · i− p0∇ · u, (2.38)
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where ρDv/Dt = ∇ · u and ρDc/Dt = ρ0Dc
′/Dt = −∇ · i have been used. This allows

us to rewrite (2.30) as follows:

ρ0cp0
DT ′

Dt
= τij

∂ui
∂xj
−∇ · q +

{
(1 + βc0c

′)β0T0
Dp0

Dt
+ β0T0

Dp′

Dt
− ρ0β0T

′gu3

}
− (T0Λ0 − µ0)∇ · i. (2.39)

On the other hand, when k denotes the thermal conductivity, the heat flux density q
can be expressed in the following form (see Landau & Lifshitz 1987, § 59):

q = {νT (∂µ/∂c)T,p − (TΛ− µ)} i− k∇T. (2.40)

The first term in the braces, however, may be omitted on the assumption (2.10). Thus,
to the first order of small quantities, we obtain

q = −(T0Λ0 − µ0)i− k0∇T ′, (2.41)

where k0 stands for k evaluated at T = T0, p = p0, and c = c0.
Now, let us substitute (2.41) into (2.39). Noting that Λ0 and µ0, and also k0, may in

general be dependent upon x3 through p0, we get the following result:

ρ0cp0
DT ′

Dt
= τij

∂ui
∂xj

+∇ · (k0∇T ′) +

{
(1 + βc0c

′)β0T0
Dp0

Dt
+ β0T0

Dp′

Dt
− ρ0β0T

′gu3

}
+ i · e3

dp0

dx3

d

dp0
(T0Λ0 − µ0). (2.42)

However, since Λ0 = (∂µ/∂T )|(T0,p0,c0), we see from thermodynamic relations that

dΛ0

dp0
=

∂2µ

∂p∂T

∣∣∣∣
(T0,p0,c0)

=
∂2v

∂c∂T

∣∣∣∣
(T0,p0,c0)

=
∂(vβ)

∂c

∣∣∣∣
(T0,p0,c0)

= v0
∂β

∂c

∣∣∣∣
(T0,p0,c0)

− v0βc0β0. (2.43)

It also follows from thermodynamic relations that

dµ0

dp0
=
∂µ

∂p

∣∣∣∣
(T0,p0,c0)

=
∂v

∂c

∣∣∣∣
(T0,p0,c0)

= −v0βc0. (2.44)

Accordingly, since i is given by (2.11) and dp0/dx3 = −ρ0g, we obtain

ρ0cp0
DT ′

Dt
= τij

∂ui
∂xj

+∇ · (k0∇T ′) +

{
(1 + βc0c

′)β0T0
Dp0

Dt
+ β0T0

Dp′

Dt
− ρ0β0T

′gu3

}
+ (ρ0κc0

∂c′

∂x3
)

{
T0

∂β

∂c

∣∣∣∣
(T0,p0,c0)

− (β0T0 − 1)βc0

}
g. (2.45)
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To the first order of primed variables, however, this equation is equivalent to

ρ0cp0
DT ′

Dt
= (1− βc0c′)τij

∂ui
∂xj

+∇ · (k0∇T ′) +

{
β0T0

(
Dp0

Dt
+
Dp′

Dt

)
− ρ0β0T

′gu3

}
+ (ρ0κc0

∂c′

∂x3
)

{
T0

∂β

∂c

∣∣∣∣
(T0,p0,c0)

− (β0T0 − 1)βc0

}
g. (2.46)

We take (2.46) as the temperature equation for the two-component fluid.

3. Summary and discussion

The Boussinesq approximation has been extended to a two-component fluid in a way
consistent with the conservation law of mass; the governing equations are (2.12), (2.15),
(2.36), and (2.46). The equations have been obtained on the following assumption: the
density of the fluid is a function only of the concentration of one component, but the
thermal expansion coefficient of the fluid does not vanish. The equation of motion, in
particular, has been formulated on the basis of the conservation law of energy. Also, it
has turned out that the velocity of the fluid cannot in general be solenoidal.

3.1. Further approximations to the temperature equation

The temperature equation (2.46) is consistent with the conservation law of energy. It
may usually be approximated, however, by simpler equations as discussed below.

We first consider the last term of (2.46). If c′ changes over a vertical distance ∆h by
an amount ∆c′, and if the motion to be analyzed has a characteristic time scale τ , this
term may be omitted when the following condition is satisfied:

|Γc0|
(
κc0

∆c′

∆h
τ

)
1

∆T ′
� 1, Γc0 =

{
T0

∂β

∂c

∣∣∣∣
(T0,p0,c0)

− (β0T0 − 1)βc0

}
g

cp0
, (3.1)

where ∆T ′ denotes the scale characterizing the change in T ′. In fact, the term vanishes
identically for a mixture of ideal gases; in that case, β = T−1, so that Γc0 = 0. We can
also introduce, by ignoring terms containing primed variables, the approximation{

β0T0

(
Dp0

Dt
+
Dp′

Dt

)
− ρ0β0T

′gu3

}
≈ β0T0

Dp0

Dt
= −ρ0β0T0gu3. (3.2)

The viscous heating term (1− βc0c′)τij∂ui/∂xj may also be ignored in comparison with
ρ0β0T0gu3 when the following condition applies:(

1

β0T0

){
ν

(gL)1/2L

}{
U

(gL)1/2

}
� 1, (3.3)

where ν = η/ρ0 is the kinematic viscosity; U and L denote respectively the velocity and
length scales characteristic of the motion to be analyzed. Then (2.46) takes the form

ρ0cp0
DT ′

Dt
= ∇ · (k0∇T ′)− ρ0β0T0gu3. (3.4)
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The last term, however, can further be neglected under the following condition:

Γ0H/∆T
′ � 1, Γ0 = β0T0g/cp0, (3.5)

in which H denotes the vertical extent of the fluid. We then have

ρ0cp0
DT ′

Dt
= ∇ · (k0∇T ′). (3.6)

This is essentially the same equation as that in the original Boussinesq approximation.

3.2. Potential temperature

When the temperature equation is approximated by (3.4), it is possible to employ, in
place of T ′, the potential temperature θ defined by

θ = θ0 + T ′, θ0 = T0 +

∫ x3

a
Γ0(x′3)dx′3, (3.7)

where the integral is taken from a reference level x′3 = a. Then (3.4) can be written as

ρ0cp0
Dθ

Dt
= ∇ · (k0∇θ)−

d(k0Γ0)

dx3
. (3.8)

The equation of motion (2.36) can also be written in the form

ρ0
Du

Dt
= −∇p̂′ + (1− βc0c′)

∂τij
∂xj

ei + ρ0β0θge3 − ρ0βc0c
′ge3, (3.9)

where the modified perturbation pressure p̂′ is defined by

p̂′ = p′ + ρ0g

∫ x3

a
β0(x′3)θ0(x′3)dx′3. (3.10)

These equations, together with (2.12) and (2.15), form a closed system of equations.
The boundary conditions for θ can be obtained from those for T ′. Let us consider, as

an example, the following boundary conditions for T ′:

T ′|x3=a = 0, T ′|x3=b = 0. (3.11)

In view of (3.7), these conditions can be rewritten as follows:

θ|x3=a = T0, θ|x3=b = T0 +

∫ b

a
Γ0(x′3)dx′3. (3.12)

We next consider the following boundary conditions for T ′:

(∂T ′/∂x3)|x3=a = 0, (∂T ′/∂x3)|x3=b = 0. (3.13)
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In this case, the following conditions for θ are obtained:

(∂θ/∂x3)|x3=a = Γ0(a), (∂θ/∂x3)|x3=b = Γ0(b). (3.14)

As is apparent from these examples, although θ plays in the governing equations almost
the same role as T ′, the boundary conditions for θ are different from those for T ′.

We note, furthermore, that the heat flux density q is given in terms of θ as follows:

q = −(T0Λ0 − µ0)i− k0∇θ + k0Γ0e3. (3.15)

Hence q is not proportional to the gradient of θ even when i = 0.

3.3. On the coefficient of the concentration perturbation in (2.5)

The density of a fluid is assumed to be constant under the Boussinesq approximation
(see Maruyama 2014). Thus we assumed in (2.5) that the coefficient βc0 = βc(T0, p0, c0)
may be regarded, though it may in general be a function of x3 through p0, as constant;
ρ then takes a constant value when c′ is uniform throughout the fluid. This assumption
is justifiable when the following condition applies:∣∣∣(βc0 − βc0|x3=a) (βc0|x3=a)−1

∣∣∣� 1. (3.16)

If βc is independent of the pressure, however, βc0 is indeed constant. This is the case
when the fluid considered is a mixture of ideal gases; βc is then given by

βc =
kBT

p

(
c

ma
+

1− c
mb

)
∂

∂c

{
kBT

p

(
c

ma
+

1− c
mb

)}−1

=
ma −mb

ma − (ma −mb)c
. (3.17)

Here kB stands for the Boltzmann constant; ma and mb are the mass of a molecule of
component A and that of component B, respectively.
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