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Abstract

This note deals with internal gravity waves in a single-component fluid and those
in a two-component fluid in a physically reasonable manner. As a result, it becomes
apparent that internal gravity waves can be classified, on the basis of their source of
kinetic energy, into two categories: thermal and non-thermal internal gravity waves.
The source of the kinetic energy of a thermal internal gravity wave is, in spite of its
being called an internal “gravity” wave, the internal energy of the fluid. In contrast,
that of a non-thermal internal gravity wave is the gravitational potential energy of
the fluid: waves in this category can exist only in multi-component fluids.

1. Introduction

Internal gravity waves can propagate inside a continuously stratified fluid. Standard
textbooks deal with waves of this kind on the assumption that the density of the fluid
is a function only of the specific entropy of the fluid (see e.g. Landau & Lifshitz 1987;
Gill 1982). This assumption, however, is physically unacceptable as explained below.

Suppose that a fluid is contained in a vessel with a fixed volume. If the density of the
fluid is a function only of the specific entropy of the fluid, then we can change the mass
of the fluid by heating or cooling the fluid; this conclusion is obviously absurd.

This study deals with internal gravity waves in a single-component fluid and those in
a two-component fluid in a physically reasonable manner. As a result, it turns out that
internal gravity waves can be classified, according to their source of kinetic energy, into
two categories: thermal and non-thermal internal gravity waves.
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2. Internal gravity waves in a single-component fluid

2.1. Physical situation

Let us consider a stationary layer of single-component fluid in a uniform gravitational
field. We set up in the fluid a system of rectangular coordinates (x1, x2, x3) with the x3-
axis taken vertically upwards. The unit vectors in the positive x1-, x2-, and x3-directions
are denoted, respectively, by e1, e2, and e3. Latin indices are used in the following to
represent the numbers 1, 2, and 3; Greek indices, on the other hand, take on the values
1 and 2. The summation convention is implied throughout.

We first assume that the thermal expansion coefficient β of the fluid is nonzero:

β = v−1(∂v/∂T )p 6= 0. (2.1)

Here v is the specific volume of the fluid; T and p are the temperature and the pressure
of the fluid, respectively. This assumption will usually be satisfied in practice.

Now, let H denote the thickness of the fluid layer. We assume that H satisfies

(gH)1/2/a� 1, (2.2)

where g denotes the acceleration due to gravity, and a the speed of sound in the fluid.
We next require that the characteristic scale ∆T of the temperature variation in the

fluid should be small in the following sense:

β∆T � 1. (2.3)

Furthermore, we assume that the temperature of the fluid varies only slightly from some
constant reference temperature T0. We require, accordingly, that

∆T/T0 � 1. (2.4)

Suppose now that an internal gravity wave is present in the fluid layer: its wavelength
λ is assumed to fulfill the condition λ/H � 1. Let U denote the scale characterizing the
magnitude of the fluid velocity associated with the wave. We assume that

U/(gλ)1/2 � 1. (2.5)

We also make the following assumption on the phase velocity Vp of the wave:

Vp/(gλ)1/2 � 1. (2.6)

Finally, it is assumed that the viscosity of the fluid and the thermal conduction in the
fluid may be ignored so far as the fundamental properties of the wave are concerned.
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2.2. Basic system of equations

When the above conditions are met, the internal gravity wave can be dealt with under
the Boussinesq approximation (Maruyama 2019a). In this subsection, we formulate the
equations for the physical quantities necessary for describing the wave.

We first need to recognize that, under the Boussinesq approximation, the density ρ of
the fluid must be regarded as constant (see Maruyama 2019a):

ρ = ρ0. (2.7)

The temperature T of the fluid, on the other hand, is expressed in the form

T = T0 + T ′, (2.8)

where T ′ denotes the small deviation from T0. We can also write the pressure p of the
fluid, denoting by p′ the small perturbation pressure, as follows:

p = p0 + p′. (2.9)

Here the hydrostatic pressure p0 is defined by

p0 = −ρ0gx3 + constant. (2.10)

Now, on account of (2.7), the equation of continuity reduces to

∇ · u = 0, (2.11)

where u = uiei denotes the velocity of the fluid.
As for the equation of motion, it takes the following form:

ρ0
Du

Dt
= −∇p′ + ρ0β0T

′ge3. (2.12)

Here D/Dt denotes the material derivative, and β0 is β at T = T0 and p = p0:

β0 = β(T0, p0). (2.13)

The last term of (2.12) represents the buoyancy force due to changes in temperature: it
is required for consistency with the conservation law of energy (see Maruyama 2019a).

The final equation is the temperature equation

ρ0cp0
DT ′

Dt
= −ρ0β0T0gu3. (2.14)

Here cp0 is the specific heat at constant pressure cp at T = T0 and p = p0:

cp0 = cp(T0, p0). (2.15)

It should be mentioned that, in (2.14), a few terms small in comparison with the term
on the right-hand side have been omitted (see Maruyama 2019a).
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2.3. Dispersion relation

Having formulated the basic system of equations, we are now in a position to derive
the dispersion relation for the internal gravity wave.

To this end, we first assume that β0 and cp0, which may in general be functions of x3
through p0, change little over distances of the order of the wavelength. This assumption
allows us to regard β0 and cp0 as constant.

We also assume that the velocity scale U is much smaller than the phase velocity Vp:

U/Vp � 1. (2.16)

Then the wave can be looked upon as a small amplitude wave.
Now, suppose that T ′ in (2.12) and (2.14) is given by

T ′ = τ0(x3) + τ. (2.17)

Here τ0(x3), which is assumed to be a linear function of x3, represents the basic thermal
stratification; τ corresponds to the temperature perturbation associated with the wave.
It is then reasonable to express p′ as follows:

p′ = π0(x3) + π, (2.18)

where π0(x3) is a function of x3 satisfying the relation dπ0/dx3 = ρ0β0τ0g.
Substituting (2.17) and (2.18) into (2.12), we get

ρ0
∂u

∂t
= −∇π + ρ0β0τge3, (2.19)

where Du/Dt has been approximated by ∂u/∂t. Similarly, from (2.14), we have

∂τ

∂t
+
dτ0
dx3

u3 = −Γ0u3, (2.20)

in which Γ0 = β0T0g/cp0 is the adiabatic lapse rate.
From these equations and (2.11), we can find the following equation for u3:

∂2

∂t2
∂2u3
∂xi∂xi

+N2
θ

∂2u3
∂xµ∂xµ

= 0. (2.21)

Here Nθ, which may be called the thermal buoyancy frequency, is defined as follows:

N2
θ = β0g (dτ0/dx3 + Γ0) . (2.22)

Suppose now that the wave is a sinusoidal plane wave. We put, accordingly,

u3 = W sin(kixi − ωt), (2.23)

where W is a constant; ki denote the components of the wave vector kiei, and ω is the
angular frequency. The substitution of (2.23) into (2.21) yields

ω2 = N2
θ kµkµ/kiki. (2.24)

This is the dispersion relation for the internal gravity wave.
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2.4. Energetics

Now, with respect to the energy of the internal gravity wave, we can find from (2.11),
(2.19), and (2.20) the following equation:

∂

∂t

(
1

2
ρ0|u|2 + Pθ

)
+∇ · (πu) = 0. (2.25)

Here Pθ is the potential energy density associated with the restoring force of the wave:

Pθ =
1

2
ρ0N

2
θ

(
τ

dτ0/dx3 + Γ0

)2

. (2.26)

From (2.25), we observe that the total energy density of the wave consists of the kinetic
energy density ρ0|u|2/2 and the potential energy density Pθ; the energy flux density of
the wave, on the other hand, is seen to be given by πu.

It is important to note here that, as is evident from (2.19), the restoring force of the
wave is the buoyancy force due to changes in temperature. Thus the work done by the
restoring force corresponds to the conversion between kinetic and internal energy (see
Maruyama 2014). This implies that the potential energy density Pθ is stored as part of
the internal energy of the fluid. We can therefore conclude as follows: the source of the
kinetic energy of the wave is not the gravitational potential energy of the fluid but the
internal energy of the fluid, despite the wave being called an internal “gravity” wave.

3. Internal gravity waves in a two-component fluid

3.1. Physical situation

In this section, we consider again an internal gravity wave in a layer of fluid, but the
fluid is now assumed to be composed of two components A and B. We denote by c the
concentration of component A, i.e. the ratio of the mass of A to the total mass of the
fluid in a given volume element. As regards the scale ∆c characterizing the variation of
c, we assume that the following condition is satisfied:

βc∆c� 1, (3.1)

where βc = ρ−1(∂ρ/∂c)T,p. Furthermore, ∆c itself is taken to be small:

∆c� 1. (3.2)

It is also assumed that the change in c caused by diffusion may be ignored.
Except for this difference, the same physical situation as that in § 2 is assumed.

3.2. Basic system of equations

As in § 2, the temperature T and the pressure p of the fluid are respectively written
as (2.8) and (2.9). The concentration c is similarly expressed in the form

c = c0 + c′, (3.3)
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where c0 denotes a constant reference concentration, and c′ the small deviation from c0.
The density ρ of the fluid is, in contrast to § 2, not constant: it is taken to be given by

ρ = ρ0 + ρ0βc0c
′. (3.4)

Here βc0 stands for βc at T = T0, p = p0, and c = c0:

βc0 = βc(T0, p0, c0). (3.5)

It is assumed that βc0 may be regarded as constant (see Maruyama 2019b).
When c is written as (3.3), we get the following concentration equation:

Dc′

Dt
= 0, (3.6)

where, as stated in the previous subsection, the effect of diffusion has been neglected.
When ρ is given by (3.4), on the other hand, the equation of motion can be obtained

in the following form (see Maruyama 2019b):

ρ0
Du

Dt
= −∇p′ + ρ0β0T

′ge3 − ρ0βc0c′ge3. (3.7)

Here β0 is redefined as follows:

β0 = β(T0, p0, c0). (3.8)

The last term of (3.7) represents the buoyancy force due to changes in concentration.
In view of (3.4) and (3.6), the equation of continuity is seen to be given by (2.11) as

before. Also, the temperature equation is given by (2.14), with cp0 redefined by

cp0 = cp(T0, p0, c0). (3.9)

3.3. Dispersion relation

In order to find the dispersion relation for the internal gravity wave, we again regard
β0 and cp0 as constant and the wave as a small amplitude wave.

We next assume that T ′ is given by (2.17) and that c′ is similarly written as

c′ = σ0(x3) + σ. (3.10)

Here σ0(x3) is a linear function of x3. In accord with this assumption, p′ is expressed as
(2.18) with π0 satisfying the relation dπ0/dx3 = ρ0β0τ0g − ρ0βc0σ0g.

The equation of motion (3.7) then reduces to

ρ0
∂u

∂t
= −∇π + ρ0β0τge3 − ρ0βc0σge3, (3.11)

while the temperature equation is given by (2.20) as before. The concentration equation
(3.6), on the other hand, takes the following form:

∂σ

∂t
+
dσ0
dx3

u3 = 0. (3.12)

6



These equations, combined with (2.11), yield the following equation for u3:

∂2

∂t2
∂2u3
∂xi∂xi

+ (N2
θ +N2

c )
∂2u3

∂xµ∂xµ
= 0. (3.13)

Here Nc, which we term the non-thermal buoyancy frequency, is defined by

N2
c = −βc0g(dσ0/dx3). (3.14)

From (3.13), we obtain the following dispersion relation for the wave:

ω2 = (N2
θ +N2

c )kµkµ/kiki. (3.15)

When Nc/Nθ � 1, (3.15) reduces to (2.24); this implies that the effect of the variation
of concentration is negligible. When Nθ/Nc � 1, in contrast, (3.15) becomes

ω2 = N2
c kµkµ/kiki. (3.16)

The thermal effect can be ignored in this case.

3.4. Energetics

The energy equation for the internal gravity wave can now be obtained as follows:

∂

∂t

(
1

2
ρ0|u|2 + Pθ + Pc

)
+∇ · (πu) = 0, (3.17)

where Pc is the potential energy density associated with the restoring force of the wave
arising from the buoyancy force due to changes in concentration: it is given by

Pc =
1

2
ρ0N

2
c

(
σ

dσ0/dx3

)2

. (3.18)

As observed in § 2.4, the potential energy density Pθ is stored as part of the internal
energy of the fluid. It is to be noted that, in contrast, the potential energy density Pc is
stored as part of the gravitational potential energy of the fluid. This can be seen from
the following fact: Pc is the potential energy density associated with the restoring force
arising from the buoyancy force due to changes in concentration; however, the work done
by this buoyancy force corresponds to the conversion between kinetic and gravitational
potential energy (see Maruyama 2014). It therefore follows that, when Nθ/Nc � 1, the
source of the kinetic energy of the wave is the gravitational potential energy of the fluid;
when Nc/Nθ � 1, on the other hand, it is the internal energy of the fluid.

4. Conclusion

Internal gravity waves in a single-component fluid and those in a two-component fluid
have been treated in a physically reasonable way, and their fundamental properties have
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been derived. As a consequence, it has become apparent that internal gravity waves can
be classified into two categories on the basis of their source of kinetic energy.

Waves in the first category may be called thermal internal gravity waves; the source
of the kinetic energy of a thermal internal gravity wave in a fluid is the internal energy
of the fluid. Internal gravity waves in a single-component fluid are all in this category.

Waves in the second category, which are termed non-thermal internal gravity waves,
can exist only in multi-component fluids. The source of the kinetic energy of this kind
of wave in a multi-component fluid is the gravitational potential energy of the fluid.

It should be noted, however, that these two categories are not mutually exclusive: the
source of the kinetic energy of an internal gravity wave in a multi-component fluid is, in
general, both the internal and the gravitational potential energy of the fluid. Note also
that the dispersion relations for thermal and non-thermal waves are formally the same;
these waves are indistinguishable in their kinematic behavior.
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