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Abstract

The potential energy density of an internal gravity wave in a thermally stratified
fluid is stored, at least partly, in the internal energy of the fluid. This note verifies
this fact on the basis of a simple thought experiment.

1. Introduction

Internal gravity waves can be classified into two categories: thermal and non-thermal
waves (Maruyama 2020). The classification is based on the following fact: the potential
energy density of a thermal wave is stored in the internal energy of the fluid, while that
of a non-thermal wave is stored in the gravitational potential energy of the fluid.

It may seem somewhat paradoxical, however, that the potential energy density of an
internal “gravity” wave is stored in the internal energy of the fluid. Thus the object of
this note is to verify this seemingly curious fact through a simple thought experiment.

2. Thought experiment

Let us consider a layer of fluid in a uniform gravitational field. The fluid is assumed,
in particular, to consist of two components C1 and C2. In this layer, the z-axis is taken
vertically upwards: the unit vector in the positive z-direction is denoted by k.

2.1. Preliminaries

We first assume that the applicability of the Boussinesq approximation is guaranteed
(see Maruyama 2020). Then the temperature T of the fluid can be written as

T = T0 + T ′, (2.1)
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where T0 is a constant reference temperature, and T ′ the small deviation from T0. The
pressure p of the fluid can also be written in the following form:

p = p0 + p′. (2.2)

Here p′ denotes the small perturbation from the hydrostatic pressure p0 defined by

p0 = −ρ0gz + constant, (2.3)

in which ρ0 is a constant reference density, and g the acceleration due to gravity.
Let c denote the concentration of component C1, i.e. the ratio of the mass of C1 to the

total mass of the fluid in a given volume element. We assume that c is written as

c = c0 + c′, (2.4)

where c0 is a constant reference concentration, and c′ the small deviation from c0. The
density ρ of the fluid is then assumed to be given, in terms of c′, as follows:

ρ = ρ0 + ρ0βcc
′. (2.5)

Here the coefficient βc is taken to be constant. Though the explicit dependence of ρ on
T and p is ignored, the thermal expansion coefficient β is assumed not to vanish:

β = −ρ−1(∂ρ/∂T )p,c 6= 0. (2.6)

This coefficient also is regarded as constant.

2.2. Interchange of the positions of two fluid elements

Now, suppose that the fluid is homogeneous and that it is stationary:

T = T0, c = c0, ρ = ρ0, p = p0. (2.7)

We next consider a fluid element A with an infinitesimal volume δV lying at z = ζ: its
temperature Ta, concentration ca, and density ρa are assumed to be given by

Ta = T0 + T ′a, ca = c0 + c′a, ρa = ρ0 + ρ0βcc
′
a. (2.8)

Let Fa denote the buoyancy force acting on A: it is given by (see Maruyama 2020)

Fa = δV ρ0βT
′
agk − δV ρ0βcc′agk. (2.9)

We consider below the quasistatic process of displacing A vertically by interchanging its
position with that of a fluid element B with the same infinitesimal volume δV lying at
z = ζ + dζ, dζ being an infinitesimal distance: B is assumed to have the same physical
properties as the ambient fluid, so that no buoyancy force acts on B.

The process is carried out adiabatically and without change in concentration. Then,
since the specific entropy s is invariable, the temperature of A changes by the amount

dTa = (∂T/∂p)s,cdpa. (2.10)
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Here dpa denotes the change in pressure experienced by A, and is given by

dpa = −ρ0gdζ. (2.11)

The thermodynamic coefficient on the right-hand side of (2.10) can also be written as

(∂T/∂p)s,c = βTa/ρacp. (2.12)

Here cp denotes the specific heat at constant pressure: it is regarded as constant. Thus
we see that the temperature of A becomes, after the process,

Ta − (ρ0βTag/ρacp)dζ. (2.13)

On the other hand, since B possesses the same physical properties as the ambient fluid,
the temperature of B after the process is more simply given by

T0 + (βT0g/cp)dζ. (2.14)

Now, let us examine the work done on the system consisting of A and B through the
above process. We have already seen that the only buoyancy force acting on the system
is Fa given by (2.9). Thus the work Wa done on the system against Fa is

Wa = −δV ρ0βT ′agdζ + δV ρ0βcc
′
agdζ. (2.15)

This work is composed of two components WT ′ and Wc′ :

WT ′ = −δV ρ0βT ′agdζ, Wc′ = δV ρ0βcc
′
agdζ. (2.16)

Of these two components, Wc′ is stored as part of the gravitational potential energy of
the system. This can be seen from the following fact: the gravitational potential energy
of A increases through the process by δV ρagdζ, while that of B increases by −δV ρ0gdζ;
the sum of these increases is equal to Wc′ . On the other hand, WT ′ is stored as part of
the internal energy of the system. We confirm this, in the following, by comparing WT ′

with the increase ∆U in the internal energy of the system.
In order to calculate ∆U , we now consider another quasistatic process connecting the

initial and the final state of the above process. In this process, before interchanging the
positions of A and B, we first add to A the following amount of heat:

Q1 = δV ρacp(T0 − Ta). (2.17)

Then the temperature of A becomes T0, and the buoyancy force Fa reduces to

Fa = −δV ρ0βcc′agk. (2.18)

After the positions of A and B are interchanged, the temperature of A becomes

T0 − (ρ0βT0g/ρacp)dζ. (2.19)
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The temperature of B, on the other hand, becomes (2.14) as before. Finally, we add to
A the following amount of heat:

Q2 = δV ρacp {(Ta − T0)− (ρ0βTag/ρacp − ρ0βT0g/ρacp)dζ} . (2.20)

Then the temperature of A becomes (2.13); we have reached the final state.
With respect to this process, we can obtain the following energy equation:

Q1 +Q2 +Wc′ = ∆U + ∆Eg, (2.21)

where Wc′ is the work done against Fa given by (2.18), and ∆Eg the increase through
the process in the gravitational potential energy of the system. We have already seen,
however, that Wc′ = ∆Eg. As a result, we obtain

∆U = Q1 +Q2 = −δV ρ0βT ′agdζ. (2.22)

This proves that, as expected, ∆U is equal to WT ′ given in (2.16).
On the basis of these observations, we can conclude as follows: the work done against

the buoyancy force due to changes in concentration is stored as part of the gravitational
potential energy of the fluid, while that done against the buoyancy force due to changes
in temperature is stored as part of the internal energy of the fluid.

3. Work done on a fluid element in uniform stratification

Next, suppose that the fluid layer is uniformly stratified and that an internal gravity
wave is present in the fluid. Correspondingly, we write T ′ in (2.1) and c′ in (2.4) as

T ′ = τ0(z) + τ, c′ = σ0(z) + σ. (3.1)

Here τ0(z) and σ0(z) are linear functions of z, and represent the uniform stratification;
τ and σ denote the perturbations due to the wave. We also write p′ in (2.2) as follows:

p′ = π0(z) + π, (3.2)

where π0(z) is a function of z satisfying the relation dπ0/dz = ρ0βτ0g − ρ0βcσ0g.
We assume here, after Maruyama (2020), that T ′ satisfies the equation

DT ′/Dt = −Γ0w, (3.3)

where D/Dt denotes the material derivative, Γ0 = βT0g/cp, and w is the z-component
of the fluid velocity. In terms of τ , this equation can be rewritten as

Dτ/Dt+ (dτ0/dz + Γ0)w = 0. (3.4)

Since w = Dz/Dt, we see from (3.4) that, for each fluid element, the condition

z + τ/(dτ0/dz + Γ0) = constant (3.5)
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holds. Here we have used the fact that dτ0/dz + Γ0 is a constant.
On the other hand, ignoring the change in concentration due to diffusion, we have

Dc′/Dt = 0. (3.6)

When rewritten in terms of σ, this equation becomes

Dσ/Dt+ (dσ0/dz)w = 0. (3.7)

Thus we observe that each fluid element satisfies, in addition to (3.5), the condition

z + σ/(dσ0/dz) = constant. (3.8)

Let us now focus our attention on an arbitrary fluid element X with an infinitesimal
volume δV . We denote by z0 the z-coordinate of the rest position of X: when X lies at
the position, both τ and σ vanish. Then, from (3.5) and (3.8), we obtain the following
expressions for the z-coordinate of X at an arbitrary instant:

z − z0 = −τ/(dτ0/dz + Γ0) = −σ/(dσ0/dz). (3.9)

Note here that the buoyancy force F acting on X is given by (see Maruyama 2020)

F = δV ρ0βτgk − δV ρ0βcσgk. (3.10)

Using (3.9), we can rewrite F in the following form:

F = −δV ρ0N2
θ (z − z0)k − δV ρ0N2

c (z − z0)k. (3.11)

Here Nθ and Nc are respectively the thermal and the non-thermal buoyancy frequency
defined as follows (see Maruyama 2020):

N2
θ = βg (dτ0/dz + Γ0) , N2

c = −βcg(dσ0/dz). (3.12)

It is seen from (3.11) that the work W done against the buoyancy force F to displace
X from its rest position is given by

W = δV ρ0N
2
θ (z − z0)2/2 + δV ρ0N

2
c (z − z0)2/2. (3.13)

This work, similarly to Wa in § 2.2, consists of two components Wτ and Wσ:

Wτ = δV ρ0N
2
θ (z − z0)2/2, Wσ = δV ρ0N

2
c (z − z0)2/2. (3.14)

In light of the conclusion of § 2.2, we recognize that Wτ is stored as part of the internal
energy of the fluid, since it represents the work done against the buoyancy force due to
changes in temperature. In contrast, Wσ is stored as part of the gravitational potential
energy of the fluid. This follows from the fact that it represents the work done against
the buoyancy force due to changes in concentration.
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4. Conclusion

We finally define, in terms of Wτ and Wσ, the following quantities:

Pθ = Wτ/δV, Pc = Wσ/δV. (4.1)

These quantities, with the aid of (3.9), can be expressed as follows:

Pθ =
1

2
ρ0N

2
θ

(
τ

dτ0/dz + Γ0

)2

, Pc =
1

2
ρ0N

2
c

(
σ

dσ0/dz

)2

. (4.2)

Now, written in terms of Pθ and Pc, (3.13) becomes

W = δV (Pθ + Pc). (4.3)

Thus Pθ + Pc is the work, per unit volume, done against the buoyancy force to displace
a fluid element from its rest position. This implies that Pθ + Pc is the potential energy
density of the internal gravity wave (see Maruyama 2020).

However, as is evident from the derivation, Pθ is stored as part of the internal energy
of the fluid. This proves that the potential energy density of an internal “gravity” wave
can really be stored in the internal energy of the fluid.
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