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Abstract

This paper reconstructs the anelastic approximation in such a manner that it can
be applied to any kind of fluid. As a result, it turns out that the work done by the
buoyancy force in the approximation corresponds to the conversion between kinetic
and internal energy. Also, the conditions for the applicability of the approximation
are clarified. It is demonstrated, in addition, that the Boussinesq approximation is
not a limiting case of the anelastic approximation.

1. Introduction

The anelastic approximation was devised by Ogura & Phillips (1962) to describe the
motion of a thermally stratified fluid. It partly takes into account the compressibility of
a fluid by allowing the density of the fluid to vary with height; nevertheless, it excludes
sound waves from the solutions of the system of governing equations.

However, the approximation, as it stands, is applicable only to ideal gases. Thus the
purpose of this paper is to reconstruct the approximation in such a manner that it can
be applied to any kind of fluid. As a result, it becomes apparent that the work done by
the buoyancy force in the approximation corresponds to the conversion between kinetic
and internal energy. The conditions for the applicability of the approximation and the
relation to the Boussinesq approximation are also discussed.

2. Anelastic approximation

We consider the motion of an inviscid fluid in a uniform gravitational field. The fluid
is assumed to be contained in a fixed finite domain Ω. In the domain, the z-axis is taken
vertically upwards: the unit vector in the positive z-direction is denoted by k.
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2.1. Equation of motion

Denoting by u the velocity of the fluid, we can express the equation of motion as

Du

Dt
= −∇p/ρ− gk, (2.1)

in which D/Dt stands for the material derivative; p and ρ are, respectively, the pressure
and the density of the fluid, and g is the acceleration due to gravity.

Let the specific enthalpy of the fluid be denoted by h. We then have the relation

dh = Tds+ vdp, (2.2)

where T and s are, respectively, the temperature and the specific entropy of the fluid;
v = 1/ρ denotes the specific volume of the fluid. In the following, all thermodynamic
quantities are regarded as known functions of h and s.

By virtue of (2.2), we can rewrite ∇p/ρ as follows:

∇p/ρ = ∇h− T∇s. (2.3)

Substituting this into (2.1), we obtain

Du

Dt
= −∇h+ T∇s− gk. (2.4)

Now, let h and s be decomposed as follows:

h = h0 + h′, s = s0 + s′. (2.5)

Here h0 and s0 are given by

h0 = −gz + c1, s0 = c2, (2.6)

with c1 and c2 being constants. Then, in terms of h′ and s′, (2.4) is written as

Du

Dt
= −∇h′ + T∇s′. (2.7)

However, regarded as a function of h and s, T can also be decomposed as follows:

T = T0 + T ′, (2.8)

where T0 is defined by
T0 = T (h0, s0). (2.9)

We introduce here the following assumption:

|T ′/T0| � 1. (2.10)

Then (2.7) may be approximated by

Du

Dt
= −∇h′ + T0∇s′. (2.11)
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Using the identity T0∇s′ = ∇(T0s
′)− s′∇T0, we finally obtain

Du

Dt
= −∇(h′ − T0s

′)− s′∇T0. (2.12)

This is the equation of motion under the anelastic approximation: as demonstrated in
the appendix, this equation of motion reduces to the one derived by Ogura & Phillips
(1962) when the fluid is an ideal gas.

Before closing this subsection, we wish to rewrite the last term of (2.12) in a different
form. To this end, we first note the following thermodynamic relations:

(∂T/∂h)s = βT/cp, (∂T/∂s)h = T (1− βT )/cp, (2.13)

where β = v−1(∂v/∂T )p is the thermal expansion coefficient, and cp the specific heat at
constant pressure. Then, in view of (2.6) and (2.9), we find

∇T0 = (∂T/∂h)s|(h0,s0)∇h0 + (∂T/∂s)h|(h0,s0)∇s0 = −(β0T0g/cp0)k, (2.14)

in which we have introduced the notation

β0 = β(h0, s0), cp0 = cp(h0, s0). (2.15)

As a result, the last term of (2.12) can be rewritten as follows:

−s′∇T0 = (β0T0s
′g/cp0)k. (2.16)

The force represented by this term is called the buoyancy force.

2.2. Equation of continuity

In view of (2.5), we can express the density ρ of the fluid as

ρ = ρ0 + ρ′, (2.17)

where ρ0 is given by
ρ0 = ρ(h0, s0). (2.18)

We now introduce the following assumption:

|ρ′/ρ0| � 1. (2.19)

Then we can approximate ρ as follows:

ρ = ρ0. (2.20)

This approximation is the essence of the anelastic approximation. The substitution of
(2.20) into the equation of continuity ∂ρ/∂t+∇ · (ρu) = 0 yields

∇ · (ρ0u) = 0. (2.21)

This is the equation of continuity under the anelastic approximation.

3



2.3. Adiabatic equation

When the conduction of heat is neglected, the general equation of heat transfer (see
Landau & Lifshitz 1987, § 49) can be written, considering (2.5) and (2.6), as follows:

ρ0T
Ds′

Dt
= 0. (2.22)

Here the approximation (2.20) has been used. On the assumption (2.10), this equation
may be approximated by

ρ0T0
Ds′

Dt
= 0. (2.23)

This adiabatic equation, together with the equation of motion (2.12) and the equation
of continuity (2.21), completes the formulation of the anelastic approximation.

3. Energetics of the anelastic approximation

Let us next study, under the anelastic approximation, the energy balance of the fluid
considered in the previous section. We first examine the internal energy of the fluid.

3.1. Internal energy

The specific internal energy e of the fluid is related to h by the formula

e = h− p/ρ. (3.1)

Under the anelastic approximation, h and s are decomposed as (2.5). Correspondingly,
p also is decomposed as follows:

p = p0 + p′, (3.2)

where p0 is defined by
p0 = p(h0, s0). (3.3)

Thus we obtain the following expression for e:

e = (h0 + h′)− (p0 + p′)/ρ0 = (h0 − p0/ρ0) + (h′ − p′/ρ0), (3.4)

in which the approximation (2.20) has been used.
On the other hand, we can find from (2.2) the thermodynamic relations

(∂p/∂h)s = ρ, (∂p/∂s)h = −ρT. (3.5)

Hence p′ can be expressed, to the first order of h′ and s′, as follows:

p′ = (∂p/∂h)s|(h0,s0)h
′ + (∂p/∂s)h|(h0,s0)s

′ = ρ0h
′ − ρ0T0s

′. (3.6)

This enables us to write
e = (h0 − p0/ρ0) + T0s

′. (3.7)
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Now, taking the material derivative of (3.7), we obtain

De

Dt
= u · ∇(h0 − p0/ρ0) + s′u · ∇T0 + T0

Ds′

Dt
. (3.8)

The multiplication of (3.8) by ρ0 yields

ρ0
De

Dt
= ∇ · {ρ0(h0 − p0/ρ0)u}+ ρ0s

′u · ∇T0. (3.9)

Here (2.21) and (2.23) have been used. However, using (2.18) and (2.21), we can write

ρ0
De

Dt
= ρ0

∂e

∂t
+ ρ0u · ∇e =

∂

∂t
(ρ0e) +∇ · (ρ0eu). (3.10)

Thus (3.9) can be rewritten in the following form:

∂

∂t
(ρ0e) +∇ · (ρ0eu) = ∇ · {ρ0(h0 − p0/ρ0)u}+ ρ0s

′u · ∇T0. (3.11)

In light of (3.7), furthermore, we observe that (3.11) reduces to

∂

∂t
(ρ0e) +∇ · (ρ0T0s

′u) = ρ0s
′u · ∇T0. (3.12)

Finally, integrating (3.12) over the domain Ω containing the fluid, we get

d

dt

∫
Ω
ρ0e dV =

∫
Ω
ρ0s
′u · ∇T0 dV. (3.13)

Here we have assumed that the normal component of u vanishes on the boundary of Ω.
This is the equation for the rate of change of the internal energy of the fluid.

3.2. Potential energy

The equation for the rate of change of the potential energy of the fluid is, on account
of the approximation (2.20), quite simple under the anelastic approximation:

d

dt

∫
Ω
ρ0gz dV = 0. (3.14)

This equation states that the potential energy of the fluid is invariable.

3.3. Kinetic energy

In order to find the equation for the rate of change of the kinetic energy of the fluid,
we first rewrite the equation of motion (2.12), using (3.6), as follows:

Du

Dt
= −∇(p′/ρ0)− s′∇T0. (3.15)
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Taking the inner product of this equation with ρ0u, we get, after some manipulation,

∂

∂t
(1

2ρ0|u|2) +∇ ·
{
ρ0(1

2 |u|
2 + p′/ρ0)u

}
= −ρ0s

′u · ∇T0. (3.16)

When the normal component of u vanishes on the boundary of Ω, (3.16) yields

d

dt

∫
Ω

1
2ρ0|u|2dV = −

∫
Ω
ρ0s
′u · ∇T0 dV. (3.17)

This is the desired equation for the rate of change of the kinetic energy of the fluid: the
term on the right-hand side represents the work done by the buoyancy force.

3.4. Total energy

Adding all the energy equations (3.13), (3.14), and (3.17), we obtain

d

dt

∫
Ω
ρ0

(
1
2 |u|

2 + gz + e
)
dV = 0. (3.18)

This equation shows that the total energy of the fluid is conserved. We see, therefore,
that the anelastic approximation is consistent with the conservation law of energy.

We also recognize, comparing (3.13) and (3.17), that the work done by the buoyancy
force in the anelastic approximation corresponds to the conversion between kinetic and
internal energy; this conclusion is the same as that arrived at by Maruyama (2014) as
regards the buoyancy force in the Boussinesq approximation.

4. Applicability of the anelastic approximation

In § 2, the anelastic approximation was derived on the assumptions (2.10) and (2.19);
the objective of this section is to find out under what conditions these two assumptions
are justifiable. The setting and the notation are the same as in the preceding sections.

4.1. Conditions for the applicability of the anelastic approximation

To begin with, we focus attention on (2.10). With the help of (2.13), T ′ in (2.10) can
be expressed, to the first order of h′ and s′, as follows:

T ′ = (∂T/∂h)s|(h0,s0)h
′ + (∂T/∂s)h|(h0,s0)s

′

= (β0T0/cp0)h′ + {T0(1− β0T0)/cp0} s′.
(4.1)

Let ∆h′ and ∆s′ denote, respectively, the characteristic scales of h′ and s′. Then, if H
denotes the vertical extent of the domain Ω containing the fluid, we have

|T ′/T0| = O{(Γ0H/T0)(∆h′/gH)}+O{(Γ0H/T0)(T0∆s′/gH)}+O(∆s′/cp0), (4.2)
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where Γ0 = β0T0g/cp0 is the adiabatic lapse rate. Now, after Ogura & Phillips (1962),
we assume that the following condition applies:

Γ0H/T0 ≤ O(1). (4.3)

Then, it is seen from (4.2) that (2.10) holds under the following three conditions:

∆h′/gH � 1, (4.4)

T0∆s′/gH � 1, (4.5)

∆s′/cp0 � 1. (4.6)

We next note the following thermodynamic relations:

(∂ρ/∂h)s = ρ/a2, (∂ρ/∂s)h = −ρT (β/cp + 1/a2), (4.7)

in which a is the speed of sound. These relations enable ρ′ in (2.19) to be expressed, to
the first order of h′ and s′, as follows:

ρ′ = (∂ρ/∂h)s|(h0,s0)h
′ + (∂ρ/∂s)h|(h0,s0)s

′

= (ρ0/a
2
0)h′ − ρ0T0(β0/cp0 + 1/a2

0)s′,
(4.8)

where we have introduced the notation

a0 = a(h0, s0). (4.9)

In view of (4.8), we can write

|ρ′/ρ0| = O{(gH/a2
0)(∆h′/gH)}+O{(gH/a2

0)(T0∆s′/gH)}
+O{(Γ0H/T0)(T0∆s′/gH)}.

(4.10)

Accordingly, (2.19) is satisfied when the condition

(gH)1/2/a0 ≤ O(1) (4.11)

applies together with (4.3), (4.4), and (4.5).
On the other hand, the following inequality can be obtained from (2.7):

|∇h′| ≤ |∂u/∂t|+ |(u · ∇)u|+ |T∇s′|. (4.12)

Denoting by L the length scale characteristic of the motion of the fluid, we can write

|∇h′| = O(∆h′/L), |∇s′| = O(∆s′/L). (4.13)

Also, if U denotes the velocity scale characteristic of the motion, we obtain

|∂u/∂t| = O(U/τ), |(u · ∇)u| = O(U2/L), (4.14)
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with τ being the time scale characteristic of the motion. Now we assume that c1 and c2

in (2.6) can be chosen so that the following condition applies:

T/T0 ≤ O(1). (4.15)

Then it follows from (4.12), (4.13), and (4.14) that, when the conditions

U/(gH)1/2 � 1, (L/τ)/(gH)1/2 � 1 (4.16)

hold together with (4.5), the condition (4.4) is satisfied.
The above results lead us to the following conclusion: the anelastic approximation is

applicable under the conditions (4.3), (4.5), (4.6), (4.11), (4.15), and (4.16).

4.2. Relation between the conditions (4.5) and (4.6)

Of the conditions for the applicability of the anelastic approximation, (4.5) and (4.6)
are both conditions on ∆s′; the relation between them needs to be clarified.

To this end, it is sufficient to note that (4.5) can be written as

∆s′/cp0 � (Γ0H/T0)/(β0T0). (4.17)

Hence, when (Γ0H/T0)/(β0T0) ≥ O(1), (4.5) is superfluous; (4.5) is satisfied so long as
(4.6) holds. When (Γ0H/T0)/(β0T0) � 1, in contrast, (4.5) places a far more stringent
constraint on ∆s′ than (4.6); (4.6) becomes redundant in this case.

5. Summary and discussion

The anelastic approximation has been reconstructed in such a manner that it can be
applied to any kind of fluid. As a result, it has become apparent that the work done by
the buoyancy force in the approximation corresponds to the conversion between kinetic
and internal energy. The conditions for the applicability of the approximation has also
been elucidated: they are given by (4.3), (4.5), (4.6), (4.11), (4.15), and (4.16).

5.1. Density of a fluid under the anelastic approximation

In § 3.3, the equation of motion (2.12) was rewritten in the form (3.15). As explained
below, some additional manipulation brings (3.15) into yet another interesting form.

We begin by rewriting the first term on the right-hand side of (3.15) as follows:

−∇(p′/ρ0) = −∇p′/ρ0 + (p′/ρ0)(∇ρ0/ρ0). (5.1)

However, from (2.6) and (2.18), the following expression for ∇ρ0 is obtained:

∇ρ0 = (∂ρ/∂h)s|(h0,s0)∇h0 + (∂ρ/∂s)h|(h0,s0)∇s0 = −(∂ρ/∂h)s|(h0,s0)gk. (5.2)

Thus, recalling that (3.6) gives p′/ρ0 = h′ − T0s
′, we have

−∇(p′/ρ0) = −∇p′/ρ0 − {(∂ρ/∂h)s|(h0,s0)h
′ − T0(∂ρ/∂h)s|(h0,s0)s

′}(g/ρ0)k. (5.3)
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The second term on the right-hand side of (3.15) can also be rewritten as follows:

−s′∇T0 = ρ0(∂T/∂h)s|(h0,s0)s
′(g/ρ0)k. (5.4)

The substitution of (5.3) and (5.4) into (3.15) yields

Du

Dt
= −∇p′/ρ0 −

[
(∂ρ/∂h)s|(h0,s0)h

′ − {∂(ρT )/∂h}s|(h0,s0)s
′] (g/ρ0)k. (5.5)

However, we observe from (3.5) that

{∂(ρT )/∂h}s = −(∂ρ/∂s)h. (5.6)

This enables us to rewrite (5.5) as follows:

Du

Dt
= −∇p′/ρ0 −

{
(∂ρ/∂h)s|(h0,s0)h

′ + (∂ρ/∂s)h|(h0,s0)s
′} (g/ρ0)k. (5.7)

As a result, in view of (4.8), we obtain the equation of motion expressed in the form

Du

Dt
= −∇p′/ρ0 − (ρ′g/ρ0)k. (5.8)

This expression contains ρ′ defined by (4.8) in addition to ρ0. However, it should be
emphasized that, under the anelastic approximation, the density of a fluid is not given
by ρ0 + ρ′; as is evident from the discussion in the preceding sections, it is given by ρ0.

5.2. Anelastic approximation for a shallow layer of fluid

Let us consider again the fluid of § 2. Under the anelastic approximation, its density
ρ = ρ0 varies with height: using (2.6), (2.18), and (4.7), we can write

∇ρ0 = (∂ρ/∂h)s|(h0,s0)∇h0 + (∂ρ/∂s)h|(h0,s0)∇s0 = −(ρ0g/a
2
0)k. (5.9)

However, ρ0 may be regarded as constant when the following condition is fulfilled:

∆ρ0/ρ0 � 1. (5.10)

Here ∆ρ0 denotes the variation scale of ρ0 over the vertical extent H of the domain Ω
containing the fluid. Since it is reasonable to put

∆ρ0 = |∇ρ0|H = ρ0gH/a
2
0, (5.11)

we realize that ρ0 may be regarded as constant under the condition

(gH)1/2/a0 � 1. (5.12)

In this case, the equation of continuity ∂ρ/∂t+∇ · (ρu) = 0 reduces to

∇ · u = 0. (5.13)
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This equation is the same as that applying under the Boussinesq approximation.
As for the equation of motion (3.15), it becomes, when ρ0 is regarded as constant,

Du

Dt
= −∇p′/ρ0 + (β0T0s

′g/cp0)k. (5.14)

Here (2.16) has been used. On the other hand, from (4.1), we have

T ′/T0 = (Γ0H/T0)(h′/gH − T0s
′/gH) + s′/cp0. (5.15)

Suppose now that, in addition to (5.12), the following condition applies:

Γ0H/T0 � 1. (5.16)

Then it seems reasonable to approximate (5.15) as follows:

T ′/T0 = s′/cp0. (5.17)

Substituting this into (5.14), we get

Du

Dt
= −∇p′/ρ0 + β0T

′gk. (5.18)

We recognize that this equation of motion has the same form as that obtained under
the Boussinesq approximation. We should note, however, that T ′ in (5.18) denotes the
deviation of temperature from an isentropic distribution; the corresponding quantity in
the Boussinesq approximation is that from an isothermal distribution.

More importantly, however, it should be noted that (5.15) can be written as

T ′/T0 = (Γ0H/T0)(h′/gH − T0s
′/gH) + {(Γ0H/T0)/(β0T0)} (T0s

′/gH). (5.19)

Hence, under the condition (5.16), we obtain, unless (Γ0H/T0)/(β0T0) ≥ O(1),

T ′/T0 = 0. (5.20)

It is seen, therefore, that the argument leading to (5.18) does not apply in general.
From these results, we can conclude as follows: the Boussinesq approximation is not

a limiting case of the anelastic approximation.

Appendix. Anelastic approximation for an ideal gas

We consider the same physical situation as that in § 2, but the fluid is now assumed
to be an ideal gas: the specific heat at constant pressure cp is taken to be a constant.

To begin with, we introduce a function θ(s) of the specific entropy s: it is called the
potential temperature, and is related to s by the formula

dθ/ds = θ/cp. (A.1)
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In view of the decomposition (2.5), θ can be expressed as follows:

θ = θ0 + θ′, θ0 = θ(s0). (A.2)

Here θ′ is given, to the first order of s′, as follows:

θ′ = (dθ/ds)|s=s0s
′ = (θ0/cp)s

′. (A.3)

We next introduce the function Π, which is called the Exner function, defined by

Π = T/θ. (A.4)

However, since the fluid is an ideal gas, the specific enthalpy h is written as

h = cpT ; (A.5)

this enables us to write
Π = h/cpθ. (A.6)

Now, Π can also be decomposed as follows:

Π = Π0 + Π′, Π0 = Π(h0, s0), (A.7)

where, to the first order of h′ and s′, Π′ is given by

Π′ = (∂Π/∂h)s|(h0,s0)h
′ + (∂Π/∂s)h|(h0,s0)s

′ = h′/cpθ0 − (h0/cpθ
2
0)(θ0/cp)s

′. (A.8)

On the other hand, we observe from (A.5) that

T0 = h0/cp. (A.9)

Hence, taking account of (2.6), we can write

∇T0 = ∇h0/cp = −(g/cp)k. (A.10)

Furthermore, from (A.3), (A.8), and (A.9), we obtain

s′ = cp(θ
′/θ0), h′ − T0s

′ = cpθ0Π′. (A.11)

The substitution of (A.10) and (A.11) into (2.12) yields, since cp and θ0 are constant,

Du

Dt
= −cpθ0∇Π′ + (gθ′/θ0)k. (A.12)

This is the equation of motion derived by Ogura & Phillips (1962).
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