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Abstract

This paper deduces the conditions necessary for sound waves to be ignorable in a
deep fluid layer. On the basis of these conditions, it is shown that there exists only
one physically meaningful soundproof approximation for a deep layer of ideal gas:
the original anelastic approximation of Ogura & Phillips (1962).

1. Introduction

The anelastic approximation is an approximation devised by Ogura & Phillips (1962)
in order to study the deep convection of an ideal gas. It is a soundproof approximation:
it excludes sound waves from the solutions of the governing equations, though it takes
into account the compressibility of a gas by allowing the density to vary with height.

The anelastic approximation assumes an isentropic state as its base state. Maruyama
(2021b), by assuming an isothermal state as the base state, constructed a variant of the
anelastic approximation in such a way that it can be applied to any kind of fluid. This
isothermal anelastic approximation, however, turned out to be inapplicable to an ideal
gas, although it also is a soundproof approximation.

The purpose of this paper is to show that the only physically meaningful soundproof
approximation applicable to a deep layer of ideal gas is the anelastic approximation of
Ogura & Phillips. This can be done on the basis of the conditions necessary for sound
waves to be ignorable in a deep fluid layer: they are elucidated in the next section.

2. Conditions necessary for sound waves to be ignorable in a
deep fluid layer

We consider the motion in a uniform gravitational field of a layer of inviscid fluid in
a fixed finite domain Ω. In the domain, the z-axis is taken vertically upwards: the unit
vector in the positive z-direction is denoted by k.
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Let s and p denote, respectively, the specific entropy and the pressure of the fluid: all
thermodynamic quantities, such as the density ρ and the temperature T of the fluid, are
regarded as known functions of s and p. Now, let us decompose s and p as follows:

s = s0(z) + s′, p = p0(z) + p′. (2.1)

Here s0(z) is an arbitrary function of z, and p0(z) is a function satisfying the equation

dp0/dz = −ρ0g, (2.2)

where ρ0 = ρ(s0, p0), and g is the acceleration due to gravity. Then, when the velocity
of the fluid is denoted by u, the equation of motion takes the form

(ρ0 + ρ′)Du/Dt = −∇p′ − ρ′gk, (2.3)

in which ρ′ = ρ− ρ0, and D/Dt stands for the material derivative. On the other hand,
the equation of continuity can be written in the form

∂ρ′/∂t+∇ ·
{

(ρ0 + ρ′)u
}

= 0. (2.4)

Also, when the conduction of heat is neglected, we have the following equation:

D(s0 + s′)/Dt = 0. (2.5)

2.1. Assumption on the depth of the layer

Let H denote the depth of the fluid layer, and let ∆p0 be defined by

∆p0 = |dp0/dz|H = ρ0gH. (2.6)

We may regard ∆p0 as a measure of the variation of p0. In terms of ∆p0, we can define
a measure ∆ρ0 of the variation of ρ0 caused by that of p0 as follows:

∆ρ0 = (∂ρ/∂p)s|(s0,p0)∆p0. (2.7)

Note here that the following thermodynamic relations hold:

(∂ρ/∂s)p = −ρβT/cp, (∂ρ/∂p)s = 1/a2, (2.8)

in which β stands for the thermal expansion coefficient, cp the specific heat at constant
pressure, and a the speed of sound. Thus ∆ρ0 can be written as

∆ρ0 = ρ0gH/a
2
0, (2.9)

where a0 = a(s0, p0). In the following, the fluid layer is assumed to be deep in the sense
that ∆ρ0 is of the same order of magnitude as ρ0. That is to say, we assume that

gH/a2
0 = O(1). (2.10)
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2.2. Conditions for sound waves to be ignorable

Let us proceed to formulate the conditions necessary for sound waves to be ignorable
in the fluid layer. Using (2.8), we have, to the first order of s′ and p′,

ρ′ = −(ρ0β0T0/cp0)s′ + (1/a2
0)p′, (2.11)

in which β0 = β(s0, p0), T0 = T (s0, p0), and cp0 = cp(s0, p0). The second term on the
right-hand side represents the fluctuation in density due to that in pressure; hence, for
sound waves to be ignorable in the fluid layer, this term needs to be negligible.

Now, let ∆s′ and ∆p′ denote respectively the characteristic scales of s′ and p′. Then
the following estimate can be obtained from (2.11):

|ρ′/ρ0| = O
{
β0T0(∆s′/cp0)

}
+O

{
(gH/a2

0)(∆p′/ρ0gH)
}
. (2.12)

From this estimate and (2.10), we observe that the second term on the right-hand side
of (2.11) is negligible, in comparison with ρ0, when the following condition applies:

∆p′/ρ0gH � 1. (2.13)

This gives a condition necessary for sound waves to be ignorable in the fluid layer.
When the second term on the right-hand side of (2.11) is negligible, however, the first

term must also be negligible. This can be seen from the following argument.
Suppose that the second term on the right-hand side of (2.11) is negligible. Then the

total mass M of the fluid layer is given by

M =

∫
Ω
ρ0dV −

∫
Ω

(ρ0β0T0/cp0)s′dV. (2.14)

The first term on the right is constant, but the second term varies when the fluid layer
is heated or cooled. Accordingly, the conservation law of mass requires that the second
term be absent; the first term on the right-hand side of (2.11) must be negligible.

As a result, we see from (2.12) that the condition

β0T0(∆s′/cp0)� 1 (2.15)

is necessary, in addition to (2.13), for sound waves to be ignorable in the fluid layer.

2.3. A requirement on the basic distribution of entropy

If we introduce the scale ∆s0 characterizing the variation of s0, the condition (2.15)
can be rewritten as

β0T0(∆s0/cp0)(∆s′/∆s0)� 1. (2.16)

Here ∆s′/∆s0, the magnitude of ∆s′ relative to ∆s0, can be estimated as follows.
Let us now consider an arbitrary fluid particle in the fluid layer: its position and its

z-coordinate are denoted, respectively, by r(t) and z(t). Then, from (2.5), we have

s′[r(t), t] = s′(r0, t0) + {s0(z0)− s0[z(t)]} , (2.17)
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in which r0 and z0 are, respectively, the position and the z-coordinate of the particle at
an initial instant t = t0. Since the particle can move over the whole depth of the layer,
the second term on the right is expected to be of the same order of magnitude as ∆s0;
the first term may be large or small depending on the initial distribution of s′. Thus, in
view of the fact that the particle is arbitrary, we can get from (2.17) the estimate

∆s′/∆s0 ≥ O(1). (2.18)

As a result, the following condition on the variation scale of s0 is obtained:

β0T0(∆s0/cp0)� 1. (2.19)

This provides a requirement for the existence of a soundproof approximation for a deep
fluid layer: the basic distribution of entropy in the layer must satisfy the requirement in
order for a physically meaningful soundproof approximation for the layer to exist.

3. Soundproof approximation for a deep layer of ideal gas

We next consider, in particular, a deep layer of ideal gas: its specific heat at constant
pressure cp is taken to be constant. Applying the results obtained so far, we can prove
that essentially only one soundproof approximation exists for this layer of ideal gas.

3.1. Basic distribution of entropy

First of all, it should be noted that the following relation holds for an ideal gas:

βT = 1. (3.1)

Hence, applied to the layer of ideal gas, the requirement (2.19) reduces to

∆s0/cp � 1. (3.2)

We discuss below the physical significance of (3.2).
To this end, it is convenient to introduce a function θ(s) of the specific entropy s: it

is known as the potential temperature, and is related to s by the formula

dθ/ds = θ/cp. (3.3)

Now, let θ0 denote θ(s0): θ0 represents, in place of s0, the basic distribution of entropy
in the layer. Let us also define, in terms of ∆s0, the following quantity:

∆θ0 = (dθ/ds)|s=s0∆s0 = (θ0/cp)∆s0. (3.4)

This provides a measure of the variation of θ0. Then (3.2) can be written as

∆θ0/θ0 � 1. (3.5)

From this expression, we see that the basic distribution of entropy in the layer must be
virtually uniform for a soundproof approximation for the layer to exist:

s0 = constant. (3.6)
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3.2. Conditions on temperature and density

Let us next apply (2.13) and (2.15) to the layer of ideal gas: the result is

∆p′/ρ0gH � 1, ∆s′/cp � 1. (3.7)

We consider below the temperature and the density of the gas under these conditions.
To begin with, let T0 and T ′ be defined as follows:

T0 = T (s0, p0), T ′ = T − T0. (3.8)

We note here the following thermodynamic relations:

(∂T/∂s)p = T/cp, (∂T/∂p)s = βT/ρcp. (3.9)

These relations and (3.1) enable us to get, to the first order of s′ and p′,

T ′ = (T0/cp)s
′ + (1/ρ0cp)p

′. (3.10)

From this expression for T ′, the following estimate is obtained:

|T ′/T0| = O(∆s′/cp) +O
{

(ΓH/T0)(∆p′/ρ0gH)
}
, (3.11)

where Γ = g/cp is the adiabatic lapse rate. We also have, for an ideal gas,

ΓH/T0 = (γ − 1)gH/a2
0. (3.12)

Here γ is the ratio of specific heats, and γ − 1 < 1 for an ideal gas. Thus, considering
(2.10), we observe that the following condition applies under the conditions (3.7):

|T ′/T0| � 1. (3.13)

As for the density of the gas, the following estimate is obtained from (2.12):

|ρ′/ρ0| = O(∆s′/cp) +O
{

(gH/a2
0)(∆p′/ρ0gH)

}
. (3.14)

Hence, under the conditions (3.7), we have

|ρ′/ρ0| � 1. (3.15)

3.3. Anelastic approximation of Ogura & Phillips (1962)

Now, suppose that a soundproof approximation has been found for the layer of ideal
gas. Then, in view of the above argument, the approximation, so long as it is physically
meaningful, must have the properties (3.6), (3.13), and (3.15). As shown by Maruyama
(2021a), however, an approximation with the properties is the anelastic approximation
of Ogura & Phillips (1962). It therefore follows that the soundproof approximation is,
so long as it is physically meaningful, this anelastic approximation.

From this result, we recognize that the anelastic approximation of Ogura & Phillips is
the only physically meaningful soundproof approximation for a deep layer of ideal gas.
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4. Conclusion

For a physically meaningful soundproof approximation to exit for a fluid layer, sound
waves must be ignorable in the layer. In the present study, we considered a fluid layer
which is deep in the sense that the condition (2.10) holds, and obtained the conditions
(2.13) and (2.15) necessary for sound waves to be ignorable in the layer; as regards the
basic distribution of entropy in the layer, we further found the requirement (2.19).

We then applied the results to a deep layer of ideal gas, and arrived at the conclusion
that there exists one and only one physically meaningful soundproof approximation for
a deep layer of ideal gas: the anelastic approximation of Ogura & Phillips (1962).
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