
Extension of the anelastic approximation to
a two-component fluid

Kiyoshi Maruyama
Department of Earth and Ocean Sciences, National Defense Academy,

Yokosuka, Kanagawa 239-8686, Japan

August 11, 2022

Abstract

This paper extends the anelastic approximation to a two-component fluid. Under
the extended approximation, a force arises owing to changes in concentration of one
component; it is demonstrated that the work done by this force corresponds to the
conversion between kinetic and internal energy. Furthermore, the conditions under
which the extended approximation is applicable are formulated.

1. Introduction

The anelastic approximation is an approximation devised by Ogura & Phillips (1962)
in order to study convection in a deep layer of ideal gas. It considers the compressibility
of a gas by allowing the density of the gas to vary with height; it excludes, nonetheless,
sound waves from the solutions of the system of governing equations.

The original anelastic approximation of Ogura & Phillips, however, is applicable only
to ideal gases. In order to overcome this drawback, Maruyama (2021) reconstructed the
approximation in such a manner that it can be applied to any kind of fluid.

The object of this paper is to extend the anelastic approximation, on the basis of the
reconstruction by Maruyama, to a general two-component fluid. The energetics and the
applicability of the extended approximation are also discussed.

2. Extended anelastic approximation

We consider the motion of an inviscid fluid in a uniform gravitational field. The fluid
consists of two components, A and B, and is contained in a fixed finite domain Ω. In the
domain, the z-axis is taken vertically upwards: the unit vector in the positive z-direction
is denoted by k. We also denote by c the concentration of component A: the mass of A
in a unit volume of the fluid is given by ρc, with ρ being the density of the fluid.
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2.1. Equation of motion

We first express the equation of motion for the fluid as follows:

Du

Dt
= −∇p/ρ− gk, (2.1)

where D/Dt stands for the material derivative, and u denotes the velocity of the fluid;
p is the pressure of the fluid, and g the acceleration due to gravity.

Let us next introduce the specific enthalpy h of the fluid: it satisfies the relation

dh = Tds+ vdp+ µdc, (2.2)

in which T and s are the temperature and the specific entropy of the fluid, respectively;
v = 1/ρ denotes the specific volume of the fluid, and µ is the chemical potential of the
fluid (see Landau & Lifshitz 1987, § 58). In the following, all thermodynamic quantities
are regarded as known functions of h, s and c.

The relation (2.2) enables us to rewrite ∇p/ρ as follows:

∇p/ρ = ∇h− T∇s− µ∇c. (2.3)

Accordingly, the equation of motion (2.1) can be expressed in the form

Du

Dt
= −∇h+ T∇s+ µ∇c− gk. (2.4)

Now, suppose that h, s, and c are decomposed as follows:

h = h0 + h′, s = s0 + s′, c = c0 + c′. (2.5)

Here h0, s0, and c0 are defined by

h0 = −gz + α1, s0 = α2, c0 = α3, (2.6)

with α1, α2, and α3 being constants. Then (2.4) is written as

Du

Dt
= −∇h′ + T∇s′ + µ∇c′. (2.7)

On the other hand, in view of the decomposition (2.5), we can write

T = T0 + T ′, µ = µ0 + µ′, (2.8)

where T0 and µ0 are given by

T0 = T (h0, s0, c0), µ0 = µ(h0, s0, c0). (2.9)

We now introduce the following assumptions:

|T ′/T0| � 1, |µ′/µ0| � 1. (2.10)
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These assumptions allow us to approximate (2.7) as

Du

Dt
= −∇h′ + T0∇s′ + µ0∇c′. (2.11)

Since T0∇s′ = ∇(T0s
′)− s′∇T0 and µ0∇c′ = ∇(µ0c

′)− c′∇µ0, we finally obtain

Du

Dt
= −∇(h′ − T0s

′ − µ0c
′)− s′∇T0 − c′∇µ0. (2.12)

This is the equation of motion under the extended anelastic approximation.
The second term on the right-hand side of (2.12) represents the buoyancy force that

arises owing to changes in entropy. Here we note the thermodynamic relations

(∂T/∂h)s,c = βT/cp,

(∂T/∂s)h,c = T (1− βT )/cp,

(∂T/∂c)h,s = T{(∂µ/∂T )p,c − βµ}/cp,
(2.13)

where β = v−1(∂v/∂T )p,c is the thermal expansion coefficient, and cp the specific heat
at constant pressure. Hence, considering (2.6) and (2.9), we can write

∇T0 = (∂T/∂h)s,c|(h0,s0,c0)∇h0 = −(β0T0g/cp0)k, (2.14)

in which the following notation has been introduced:

β0 = β(h0, s0, c0), cp0 = cp(h0, s0, c0). (2.15)

The second term on the right-hand side of (2.12) can therefore be rewritten as

−s′∇T0 = (β0T0s
′g/cp0)k. (2.16)

The third term on the right-hand side of (2.12) represents the buoyancy force due to
changes in concentration. This term can also be put into a different form. To this end,
we first observe that the following thermodynamic relations hold:

(∂µ/∂h)s,c = −β̂c
= ρ(∂µ/∂p)T,c + (βT/cp)(∂µ/∂T )p,c,

(∂µ/∂s)h,c = (T/cp)(1− βT )(∂µ/∂T )p,c − ρT (∂µ/∂p)T,c,

(∂µ/∂c)h,s = (∂µ/∂c)T,p − ρµ(∂µ/∂p)T,c

+ (T/cp){(∂µ/∂T )p,c − βµ}(∂µ/∂T )p,c,

(2.17)

where β̂c = ρ−1(∂ρ/∂c)p,s. Thus, similarly to ∇T0, ∇µ0 can be written as

∇µ0 = (∂µ/∂h)s,c|(h0,s0,c0)∇h0 = β̂c0gk, (2.18)

where β̂c0 = β̂c(h0, s0, c0). We obtain, as a result, the expression

−c′∇µ0 = −β̂c0c′gk. (2.19)
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2.2. Equation of continuity

The density ρ of the fluid, similarly to T and µ, can be expressed as follows:

ρ = ρ0 + ρ′, (2.20)

where ρ0 is given by
ρ0 = ρ(h0, s0, c0). (2.21)

Let us now introduce the following assumption:

|ρ′/ρ0| � 1. (2.22)

This assumption allows ρ to be approximated as follows:

ρ = ρ0. (2.23)

Substituting (2.23) into the equation of continuity ∂ρ/∂t+∇ · (ρu) = 0, we get

∇ · (ρ0u) = 0. (2.24)

This is the equation of continuity under the extended anelastic approximation.

2.3. Concentration equation

In the absence of diffusion, the equation for the rate of change of the concentration c
of component A is given by (see Landau & Lifshitz 1987, § 58)

ρ
Dc

Dt
= 0. (2.25)

In view of (2.5) and (2.23), we can approximate this equation as follows:

ρ0
Dc′

Dt
= 0. (2.26)

2.4. General equation of heat transfer

Neglecting the conduction of heat, we can write the general equation of heat transfer
(see Landau & Lifshitz 1987, § 58) in the following form:

ρT
Ds

Dt
+ ρµ

Dc

Dt
= 0. (2.27)

On the assumptions (2.10), this equation may be approximated by

ρ0T0
Ds′

Dt
+ ρ0µ0

Dc′

Dt
= 0, (2.28)

where (2.5) and (2.23) have been used.
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2.5. Another form of the equation of motion

We have now completed the formulation of the anelastic approximation extended to
a two-component fluid. However, it is helpful for later reference to express the equation
of motion (2.12) in a slightly different form.

Note first that, in view of (2.5), the pressure p of the fluid can be written as

p = p0 + p′, (2.29)

where p0 is given by
p0 = p(h0, s0, c0). (2.30)

We next observe from (2.2) that the following thermodynamic relations hold:

(∂p/∂h)s,c = ρ, (∂p/∂s)h,c = −ρT, (∂p/∂c)h,s = −ρµ. (2.31)

Thus p′ can be expressed, to the first order of h′, s′, and c′, as follows:

p′ = ρ0h
′ − ρ0T0s

′ − ρ0µ0c
′. (2.32)

This expression enables us to rewrite (2.12) in the following form:

Du

Dt
= −∇(p′/ρ0)− s′∇T0 − c′∇µ0. (2.33)

2.6. Energetics of the extended approximation

Now, let us proceed to examine the energy balance of the fluid. We first consider the
specific internal energy e of the fluid: it satisfies the relation

e = h− p/ρ. (2.34)

Taking account of (2.5), (2.23), and (2.29), we obtain from (2.34) the expression

e = (h0 + h′)− (p0 + p′)/ρ0 = (h0 − p0/ρ0) + (h′ − p′/ρ0). (2.35)

In light of (2.32), however, we observe that e can be written as

e = (h0 − p0/ρ0) + T0s
′ + µ0c

′. (2.36)

Let us next take the material derivative of (2.36): the result is

De

Dt
= u · ∇(h0 − p0/ρ0) + s′u · ∇T0 + c′u · ∇µ0 + T0

Ds′

Dt
+ µ0

Dc′

Dt
. (2.37)

Multiplying (2.37) by ρ0, and considering (2.24) and (2.28), we obtain

ρ0
De

Dt
= ∇ · {ρ0(h0 − p0/ρ0)u}+ ρ0s

′u · ∇T0 + ρ0c
′u · ∇µ0. (2.38)
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However, since ρ0De/Dt = ρ0∂e/∂t+ ρ0u · ∇e = ∂(ρ0e)/∂t+∇ · (ρ0eu), we can write

∂

∂t
(ρ0e) +∇ · (ρ0eu) = ∇ · {ρ0(h0 − p0/ρ0)u}+ ρ0s

′u · ∇T0 + ρ0c
′u · ∇µ0. (2.39)

Furthermore, in view of (2.36), this equation can be put into the following form:

∂

∂t
(ρ0e) +∇ ·

{
ρ0(T0s

′ + µ0c
′)u
}

= ρ0s
′u · ∇T0 + ρ0c

′u · ∇µ0. (2.40)

The integration of (2.40) over the domain Ω containing the fluid yields

d

dt

∫
Ω
ρ0e dV =

∫
Ω

(
ρ0s
′u · ∇T0 + ρ0c

′u · ∇µ0

)
dV, (2.41)

where it has been assumed that the normal component of u vanishes on the boundary
of Ω. This is the equation for the rate of change of the internal energy of the fluid.

On the other hand, the equation for the rate of change of the potential energy of the
fluid becomes, as a consequence of the approximation (2.23),

d

dt

∫
Ω
ρ0gz dV = 0. (2.42)

It therefore follows that the potential energy of the fluid is invariable.
In order to find the equation for the rate of change of the kinetic energy of the fluid,

we first take the inner product of (2.33) with ρ0u to obtain, after some manipulation,

∂

∂t
(1

2ρ0|u|2) +∇ ·
{
ρ0(1

2 |u|
2 + p′/ρ0)u

}
= −ρ0s

′u · ∇T0 − ρ0c
′u · ∇µ0. (2.43)

Integrating (2.43) over the domain Ω, on the assumption that the normal component of
u vanishes on the boundary of Ω, we get the following desired equation:

d

dt

∫
Ω

1
2ρ0|u|2dV = −

∫
Ω

(
ρ0s
′u · ∇T0 + ρ0c

′u · ∇µ0

)
dV. (2.44)

When (2.44) is compared with (2.41), the conclusion reached by Maruyama (2021) is
confirmed: the work done by the buoyancy force due to changes in entropy corresponds
to the conversion between kinetic and internal energy.

At the same time, we notice the following fact: the work done by the buoyancy force
due to changes in concentration also corresponds to the conversion between kinetic and
internal energy. This is in contrast with the result obtained by Maruyama (2014, 2019)
for the Boussinesq approximation extended to a two-component fluid: the work done by
such a force corresponds to the conversion between kinetic and potential energy. Here it
is to be noted that, since the Boussinesq approximation is not a subset of the anelastic
approximation (Maruyama 2021), this contrast is not a contradiction.

Finally, adding all the energy equations (2.41), (2.42), and (2.44), we have

d

dt

∫
Ω
ρ0

(
1
2 |u|

2 + gz + e
)
dV = 0. (2.45)

Thus the total energy of the fluid is conserved; this implies that the extended anelastic
approximation is consistent with the conservation law of energy.
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2.7. Applicability of the extended approximation

The extended anelastic approximation was formulated on the assumptions (2.10) and
(2.22); our aim in the following is to find out under what conditions these assumptions
are justifiable. To begin with, we consider the assumption (2.22).

When ρ is regarded as a function of h, s, and c, the following relations hold:

(∂ρ/∂h)s,c = ρ/a2,

(∂ρ/∂s)h,c = −ρT (β/cp + 1/a2),

(∂ρ/∂c)h,s = −ρ2(∂µ/∂p)T,c − ρ(βT/cp)(∂µ/∂T )p,c − ρ(µ/a2),

(2.46)

in which a is the speed of sound. Hence ρ′ in (2.22) can be expressed, to the first order
of h′, s′, and c′, as follows:

ρ′ = (ρ0/a
2
0)h′ − ρ0T0(β0/cp0 + 1/a2

0)s′

− ρ0

{
ρ0(∂µ/∂p)T,c|(h0,s0,c0) + (β0T0/cp0)(∂µ/∂T )p,c|(h0,s0,c0) + (µ0/a

2
0)
}
c′.

(2.47)

Now, let the characteristic scales of h′, s′, and c′ be denoted, respectively, by ∆h′, ∆s′,
and ∆c′. Then, denoting by H the vertical extent of the domain Ω containing the fluid,
we obtain the following estimate for |ρ′/ρ0|:

|ρ′/ρ0|
= O{(gH/a2

0)(∆h′/gH)}
+O{(Γ0H/T0)(T0∆s′/gH)}

+O{(gH/a2
0)(T0∆s′/gH)}

+O{(ρ0gH/µ0)(∂µ/∂p)T,c|(h0,s0,c0)(µ0∆c′/gH)}
+O{(Γ0H/T0)(T0/µ0)(∂µ/∂T )p,c|(h0,s0,c0)(µ0∆c′/gH)}

+O{(gH/a2
0)(µ0∆c′/gH)},

(2.48)

where Γ0 = β0T0g/cp0 is the adiabatic lapse rate, and a0 is defined by

a0 = a(h0, s0, c0). (2.49)

We assume here that the following conditions on H are satisfied (Maruyama 2021):

(gH)1/2/a0 ≤ O(1), Γ0H/T0 ≤ O(1). (2.50)

Then, it is seen from (2.48) that (2.22) holds when the conditions

∆h′/gH � 1, (2.51)

T0∆s′/gH � 1, (2.52)

|µ0|∆c′/gH � 1 (2.53)

are fulfilled together with∣∣(ρ0gH/µ0)(∂µ/∂p)T,c|(h0,s0,c0)

∣∣ ≤ O(1),
∣∣(T0/µ0)(∂µ/∂T )p,c|(h0,s0,c0)

∣∣ ≤ O(1). (2.54)
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We next recall the thermodynamic relations (2.13); they enable us to write

T ′ = (β0T0/cp0)h′ + {T0(1− β0T0)/cp0} s′

+ (T0/cp0)
{

(∂µ/∂T )p,c|(h0,s0,c0) − β0µ0

}
c′.

(2.55)

From this expression, we can find the following estimate for |T ′/T0|:

|T ′/T0|
= O{(Γ0H/T0)(∆h′/gH)}

+O(∆s′/cp0)

+O{(Γ0H/T0)(T0∆s′/gH)}
+O{(T0/µ0)(∂µ/∂T )p,c|(h0,s0,c0)(µ0∆c′/cp0T0)}

+O{(Γ0H/T0)(µ0∆c′/gH)}.

(2.56)

Hence the first assumption of (2.10) is justifiable when the conditions

∆s′/cp0 � 1, (2.57)

|µ0|∆c′/cp0T0 � 1 (2.58)

hold together with (2.50) to (2.54).
On the other hand, using the thermodynamic relations (2.17), we can write

µ′ = {ρ0(∂µ/∂p)T,c|(h0,s0,c0) + (β0T0/cp0)(∂µ/∂T )p,c|(h0,s0,c0)}h′

+ {(T0/cp0)(1− β0T0)(∂µ/∂T )p,c|(h0,s0,c0) − ρ0T0(∂µ/∂p)T,c|(h0,s0,c0)}s′

+
[
(∂µ/∂c)T,p|(h0,s0,c0) − ρ0µ0(∂µ/∂p)T,c|(h0,s0,c0)

+(T0/cp0){(∂µ/∂T )p,c|(h0,s0,c0) − β0µ0}(∂µ/∂T )p,c|(h0,s0,c0)

]
c′.

(2.59)

Accordingly, |µ′/µ0| can be estimated as follows:

|µ′/µ0|
= O{(ρ0gH/µ0)(∂µ/∂p)T,c|(h0,s0,c0)(∆h

′/gH)}
+O{(Γ0H/T0)(T0/µ0)(∂µ/∂T )p,c|(h0,s0,c0)(∆h

′/gH)}
+O{(T0/µ0)(∂µ/∂T )p,c|(h0,s0,c0)(∆s

′/cp0)}
+O{(Γ0H/T0)(T0/µ0)(∂µ/∂T )p,c|(h0,s0,c0)(T0∆s′/gH)}

+O{(ρ0gH/µ0)(∂µ/∂p)T,c|(h0,s0,c0)(T0∆s′/gH)}
+O{(gHµ−1

0 /µ0)(∂µ/∂c)T,p|(h0,s0,c0)(µ0∆c′/gH)}
+O{(ρ0gH/µ0)(∂µ/∂p)T,c|(h0,s0,c0)(µ0∆c′/gH)}

+O[{(T0/µ0)(∂µ/∂T )p,c|(h0,s0,c0)}2(µ0∆c′/cp0T0)]

+O{(Γ0H/T0)(T0/µ0)(∂µ/∂T )p,c|(h0,s0,c0)(µ0∆c′/gH)}.

(2.60)

The second assumption of (2.10) is therefore justifiable when the condition∣∣(gHµ−1
0 /µ0)(∂µ/∂c)T,p|(h0,s0,c0)

∣∣ ≤ O(1) (2.61)
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is satisfied in addition to the above conditions.
We observe here, however, that the following inequality is obtained from (2.7):

|∇h′| ≤ |∂u/∂t|+ |(u · ∇)u|+ |T∇s′|+ |µ∇c′|. (2.62)

Denoting by L the length scale characteristic of the motion of the fluid, we have

|∇h′| = O(∆h′/L), |∇s′| = O(∆s′/L), |∇c′| = O(∆c′/L). (2.63)

Also, denoting by U the velocity scale characteristic of the motion, we get

|∂u/∂t| = O(U/τ), |(u · ∇)u| = O(U2/L), (2.64)

where τ stands for the time scale characteristic of the motion. Now, let us assume that
α1, α2, and α3 in (2.6) can be chosen so that the following conditions are satisfied:

T/T0 ≤ O(1), |µ/µ0| ≤ O(1). (2.65)

Then it follows from (2.62), (2.63), and (2.64) that, when the conditions

U/(gH)1/2 � 1, (L/τ)/(gH)1/2 � 1 (2.66)

hold together with (2.52) and (2.53), the condition (2.51) is fulfilled.
In conclusion, the extended anelastic approximation is applicable under the following

conditions: (2.50), (2.52), (2.53), (2.54), (2.57), (2.58), (2.61), (2.65), and (2.66).

3. Summary and Discussion

The anelastic approximation has been extended to a two-component fluid. Under the
extended approximation, changes in concentration cause a force; the work done by this
force corresponds to the conversion between kinetic and internal energy. The conditions
under which the extended approximation is applicable have also been elucidated.

3.1. On the conditions (2.52) and (2.53)

Let us now focus attention on the conditions (2.52) and (2.53) for the applicability of
the extended anelastic approximation. We readily see that they can be written as

∆s′/cp0 � (Γ0H/T0)/(β0T0), |µ0|∆c′/cp0T0 � (Γ0H/T0)/(β0T0). (3.1)

Thus, unless (Γ0H/T0)/(β0T0)� 1, (2.52) and (2.53) are harmless: they are satisfied so
long as (2.57) and (2.58) are fulfilled. When (Γ0H/T0)/(β0T0)� 1, however, (2.52) and
(2.53) place highly restrictive constraints on ∆s′ and ∆c′. This should be kept in mind
when the approximation is applied to a shallow layer of fluid.
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3.2. Yet another form of the equation of motion

Let us next turn our attention to the equation of motion (2.33). In terms of ρ′ given
by (2.47), this equation can be expressed as follows:

Du

Dt
= −∇p′/ρ0 − (ρ′g/ρ0)k. (3.2)

Our aim in the following is to demonstrate this fact.
We begin by rewriting the first term on the right-hand side of (2.33) as follows:

−∇(p′/ρ0) = −∇p′/ρ0 + (p′/ρ0)(∇ρ0/ρ0). (3.3)

The substitution of (3.3) into (2.33) yields

Du

Dt
= −∇p′/ρ0 + (p′/ρ0)(∇ρ0/ρ0)− s′∇T0 − c′∇µ0. (3.4)

However, from (2.6) and (2.21), the following expression for ∇ρ0 is obtained:

∇ρ0 = (∂ρ/∂h)s,c|(h0,s0,c0)∇h0 = −(∂ρ/∂h)s,c|(h0,s0,c0)gk. (3.5)

Thus, noting that (2.32) gives p′/ρ0 = h′ − T0s
′ − µ0c

′, we have

(p′/ρ0)(∇ρ0/ρ0) =− {(∂ρ/∂h)s,c|(h0,s0,c0)h
′

− T0(∂ρ/∂h)s,c|(h0,s0,c0)s
′

− µ0(∂ρ/∂h)s,c|(h0,s0,c0)c
′}(g/ρ0)k.

(3.6)

The terms −s′∇T0 and −c′∇µ0 in (3.4) can also be rewritten as follows:

− s′∇T0 = −s′(∂T/∂h)s,c|(h0,s0,c0)∇h0 = ρ0(∂T/∂h)s,c|(h0,s0,c0)s
′(g/ρ0)k,

− c′∇µ0 = −c′(∂µ/∂h)s,c|(h0,s0,c0)∇h0 = ρ0(∂µ/∂h)s,c|(h0,s0,c0)c
′(g/ρ0)k.

(3.7)

Hence, from (3.6) and (3.7), we obtain

(p′/ρ0)(∇ρ0/ρ0)− s′∇T0 − c′∇µ0

=− [(∂ρ/∂h)s,c|(h0,s0,c0)h
′

− {∂(ρT )/∂h}s,c|(h0,s0,c0)s
′

− {∂(ρµ)/∂h}s,c|(h0,s0,c0)c
′](g/ρ0)k.

(3.8)

However, we observe from (2.31) that the following thermodynamic relations hold:

{∂(ρT )/∂h}s,c = −(∂ρ/∂s)h,c, {∂(ρµ)/∂h}s,c = −(∂ρ/∂c)h,s. (3.9)

These relations enable us to write (3.8) as follows:

(p′/ρ0)(∇ρ0/ρ0)− s′∇T0 − c′∇µ0

=− {(∂ρ/∂h)s,c|(h0,s0,c0)h
′

+ (∂ρ/∂s)h,c|(h0,s0,c0)s
′

+ (∂ρ/∂c)h,s|(h0,s0,c0)c
′}(g/ρ0)k.

(3.10)
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Accordingly, in view of (2.46) and (2.47), we find that

(p′/ρ0)(∇ρ0/ρ0)− s′∇T0 − c′∇µ0 = −(ρ′g/ρ0)k. (3.11)

The substitution of (3.11) into (3.4) leads to (3.2).
Finally, it should be noted that, despite the above result, the density of a fluid under

the extended anelastic approximation is given by ρ0, not by ρ0 + ρ′.
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