Behavior of Reinforced Embankment on Soft Ground with and without Jet Grouted Soil-Cement Piles

¹Dennes T. Bergado and ²Glen A. Lorenzo

¹Professor and ²Doctoral Candidate, respectively Geotechnical Engineering Program Asian Institute of Technology, Bangkok, THAILAND

Soft Ground Improvement

IN LOWLAND AND OTHER ENVIRONMENTS

2004/1/24

Behavior of Reinforced Embankment on Soft Ground ...

Soil Profile along Bangkok-Chonburi

Failure of Embankment on Soft Ground

Problem of Bridge Approach on Subsiding Ground

Basal Reinforced Piled Embankments

Transition between non-piled and piled foundations

Some Applications of Soil-Cement Piles (DJM Research Group, 1984)

Prevent slope failures and settlement of embankment and structure

Increase stability of slopes

Increase horizontal resistance of structures

Reduce settlement and prevent slope failures of bridge's abutments

Advantages of Soil-Cement Stabilization

- It can significantly increase the strength and reduce the compressibility of soil.
- Soil improvement can be attained at optimum period of only 1 month.
- Cement is abundant and cheaper in Asia.
- Cement is effective than lime.

Full-Scale Embankment on DMM Piles(Jet grouting)THE SITE

2004/1/24

Jet Grouting Machine

Sequence of Soil-Cement Piles Installation

Plan View and Layout of DMM Piles

2004/1/24

Behavior of Reinforced Embankment on Soft Ground ...

Front Elevation and DMM Pile Penetration

Section thru Center Line

Instrumentations and Laying of Reinforcements

Reinforcement Connection

Hexagonal Wire Mesh

Deformation and Necking Phenomenon of Hexagonal Wire Mesh Reinforcement during Pullout (Conventional pullout test)

Modified Pullout Test Set Up (In-soil Pullout Test)

Pullout Test Apparatus (Maccaferri, 1997)

Maximum Pullout Resistance in Various Pullout Test Programs

The Finished 6m High Reinforced Embankment

Surface Settlement

(hollow symbol = "on clay"; solid = "on pile")

Differential Settlement between Soil and Pile (hollow symbol= "on clay"; solid = "on pile")

2004/1/24

Horizontal Inclinometer H1 (on pile)

Horizontal Inclinometer H2 (on clay)

Predicted vs. Measured Settlement

Steel-Grid Reinforced Embankment on Unimproved Ground

Steel-Grid MSE Embankment on Unimproved Soft Foundation

Behavior of Reinforced Embankment on Soft Ground ...

Front Elevation (unimproved foundation)

2004/1/24

Section View (unimproved foundation)

Pullout Friction Resistance of Steel Grid

Pullout Bearing Resistance of Steel Grid

Comparison of Lateral Displacement Profiles (with and without jet grouted piles)

Comparison of Surface Settlements

(with and without jet grouted piles)

36

Settlement Reduction and Rate of Settlement

2004/1/24

One-Dimensional and Unconfined Compression of Cement-Admixed Clay of Higher Water Content

Properties of the Base Clay Bangkok Clay

Properties	Characteristics values
Liquid limit, LL, (%)	103
Plastic limit, PL, (%)	43
Plasticity index, PI, (%)	60
Water content, w (%)	76-84
Liquidity index, LI	0.62
Grain size distribution	
Clay (%)	69
Silt (%)	28
Sand (%)	3
Total unit weight, γ _t (kN/m ³)	14.3
Dry unit weight, γ _d (kN/m ³)	7.73
Initial void Ratio, e	2.2
Color	Dark gray
Activity	0.87 (Normal)
Sensitivity	7.4

Behavior of Reinforced Embankment on Soft Ground ...

Definition of higher water content clay:

A clay that has a natural water content equal to or greater than its liquid limit (LL), or a clay that has been remolded to water content equal to or greater than its LL.

Conceptual Diagram of Cement Stabilized Clay at Higher Water Content

Better dispersion of cementing agents/ions within the pores. It is expected to yield higher strength

> Higher permeability and good drainage ability.

Laboratory Test

- Remolding the base clay at clay water contents from liquid limit (LL) to 2LL.
- > Water/cement ratio of slurry of 0.6.
- Curing the specimens directly in the oedometer rings for oedometer tests, and in the PVC mold for UC tests.
- Curing the specimen in the humid room within 7, 14 and 28 days; only 28 days for oedometer tests.

Post-Yield Compression Lines (5% and 10% cement) (measured values vs. predicted values)

Schematic Diagram for Predicting Compression Line of Cement Treated Clay (curing time: at least one month)

Coefficient of Permeability from Oedometer Test of Untreated and Cement-Treated Soft Bangkok Clay

Behavior of Reinforced Embankment on Soft Ground ...

Unconfined Compression Tests

Unconfined Compression Tests (cont'd)

Modulus of Elasticity versus UC Strength

(Laboratory mix cement-treated Bangkok clay)

Vertical Yield Stress σ_{vy} versus UC Strength \textbf{q}_u of Cement-Treated Bangkok Clay and Ariake Clay

Optimum Mixing Clay Water Content

Optimum mixing clay water content (w_{opt}) is hereinafter defined as the total clay water content (or mixing clay water content) of the clay-cement paste that would give the highest possible improvement in strength of cured cement-admixed clay.

Effect of Mixing Clay Water Content on Unconfined Compression (10% Cement Content)

Effect of Mixing Clay Water Content on 1-Dimensional Compression (10% Cement)

Typical Strength Curve of Cement-Admixed Clay (to get the optimum mixing clay water content)

- 1) Two full-scale reinforced embankments were constructed on soft ground.
 - The first embankment (TE1), 5.7m high and reinforced with steel-grids, was constructed on unimproved ground.
 - The second embankment (TE2), 6.0m high reinforced with hexagonal wire reinforcement, was constructed on jet grouted soil-cement piles improved ground.

2) After embankment construction, the maximum lateral movements in the unimproved soft foundation soil was 130mm, while that of improved foundation soil was only 5mm.

Therefore, the installation of soil-cement piles has effected significant increase in the lateral resistance and the bearing capacity of the foundation soil.

- 3) One year after embankment construction, the maximum surface settlement of TE1 was 1.0m while that of TE2 was only 0.325m. Therefore, the soil-cement pile installation in the soft foundation has also effectively reduced the settlement by at least 70%.
- 4) Also, one year after construction the unimproved foundation was far from its 90% consolidation, but the soil-cement piles improved ground was already close to its 90% consolidation.

5) The maximum lateral movement of the reinforced embankment on soil-cement piles improved ground was lower than that of reinforced embankment on unimproved foundation.

6) The existence of optimum mixing clay water content (w_{opt}) has been proven from the results of UC tests and oedometer tests of cement-admixed clay.

- w_{opt} was found to fall within liquid limit (LL) up to 1.15LL of the base clay.
- 8) At optimum mixing clay water content, only 10% cement content by weight is needed instead of 17% in the conventional method to obtain a UC strength of 650 kPa, with consequent 40% cost reduction.

Layout of Settlement Plates

Location of Piezometers

