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A smuggling game with asymmetrical
information of players
R Hohzaki� and R Masuda

National Defense Academy, Kanagawa, Japan

This paper deals with a smuggling game with multiple stages. Customs is allowed to patrol within the
limited number of chances and obtain reward by the capture of a smuggler. The smuggler gets a reward
depending on the amount of contraband he succeeds to ship in smuggling at each stage. The pay-off
of the game is zero-sum. In almost all past studies, they adopt the alternative of smuggling or
non-smuggling as the smuggler’s strategy. From the point of view of information, some researchers
assumed that both players could observe their opponent’s behaviour at the past stage or a few assumed
that both players had no information about their opponent. Other than these types of smuggling games
with the symmetric information, we introduce the asymmetrical acquisition of information or the
concept of perfect Bayesian equilibrium in the smuggling game for the first time.
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1. Introduction

The Japanese archipelago is isolated from foreign countries

by seas, and thus Customs or the Japanese coastguard

can comparatively easily prevent illegal actions such as

smuggling from flowing into Japan. However, they are

always requested to efficiently use their budget, with which

they patrol or inspect harbours, ships, airports and so on.

This paper aims for the effective inspection strategy by

Customs and the coastguard to deter the smuggling. The

paper deals with an inspection game or a smuggling game

with multiple stages, in which Customs and a smuggler

participate. The inspection game has been applied to a

variety of problems such as the smuggling problem of

contraband, arms-control treaty violation or inspection

by the International Atomic Energy Agency (IAEA) for

nuclear facilities. Dresher (1962) formulated the compli-

ance problem with the treaty of arms reduction as a multi-

stage game and developed the field of the inspection game.

Maschler (1966) generalized Dresher’s problem. Dresher

and Maschler consider the game where a violator wishes to

violate the treaty in secret for his benefit and an inspector

wants to prevent the illegal behaviour of the violator.

Their research was extended to two types of problems.

One is the problem of the arms-reduction treaty, including

the international inspection by the IAEA. We can count

Canty et al (2001), Avenhaus and Canty (2005), Avenhaus

and Kilgour (2004), Avenhaus et al (1996) and Hohzaki

(2007) as contributors to this type of problem. Avenhaus

et al (1996) survey past studies on compliance with

regulations and treaties. Canty et al (2001) analyse a

sampling inspection problem for nuclear materials by a

sequential game model and propose an efficient inspection

strategy to induce an inspectee to comply with the Treaty

on the Non-Proliferation of Nuclear Weapons or related

treaties. Avenhaus and Canty (2005) analyse the influence

of two types of errors on effective inspection strategies by a

sequential game model. Avenhaus and Kilgour (2004)

discuss a non-zero-sum one-shot game with an inspector

and two inspectee countries, where the inspector distributes

his inspection resource to two countries in an effective

manner and each inspectee decides legal or illegal action

for his interest in an egoistic manner. Hohzaki (2007) also

studies the distribution strategy of inspection resource to

many inspectees and derives an optimal dispatching plan

of inspection staffs to facilities in the inspectee countries.

The other branch from Dresher’s research is the

smuggling game with a smuggler and Customs. Thomas

and Nisgav (1976) deal with a smuggling game, where

one or two patrol boats are available for Customs, and

propose a numerical algorithm to repeatedly solve a one-

stage matrix game step by step. Baston and Bostock (1991)

give a closed form of equilibrium for a game similar to the

model of Thomas and Nisgave. Many researchers adopt

the so-called perfect-capture assumption that Customs

certainly captures the smuggler when both players meet.
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But Baston and Bostock model the problem into the

imperfect-capture model and succeed in solving the game

by introducing the capture probability depending on the

number of patrol boats. But the smuggler is assumed to

have at most one opportunity to ship contraband. Garnaev

(1994) extends their work to a model with three patrol

boats. Sakaguchi (1994) first introduced the assumption

that the smuggler might take an action several times in the

perfect-capture model. Ferguson and Melolidakis (1998) is

an extension of the Sakaguchi model, assuming that the

smuggler can get rid of the capture by means of side

payment but he must pay penalty on his capture. Hohzaki

et al (2006) and Hohzaki (2006) also extend Sakaguchi’s

model such that the capture of the smuggler terminates the

game and the encounter of the smuggler and Customs

stochastically results in capture, success of smuggling or

nothing.

All past researches we survey above have treated a two-

choice strategy of smuggling or non-smuggling as a

smuggler’s strategy. However, we can think of more natural

smuggling strategy: how much contraband should be

shipped at any one time. We have a few reports on the

theme such as Hohzaki (2011) but the analytical study

on the amount of contraband has just started. Other than

the theme, information acquisition is a crucial issue to

a general model of the game. The concept of complete

information or incomplete information was proposed by

Harsanyi (1967) and it has been applied to a huge variety

of game models. In the smuggling game, players obtain

information about their opponents in different ways.

Customs is a public organization, but the smuggler group

is a secret society in general. Therefore, the behaviour of

Customs is comparatively clear and open to outside, but the

smuggler keeps his action or his plan deeply in secret. From

the situation, the information acquisition must be asymme-

trical between players. In the past models, they never

thought of the asymmetrical information. They assume that

players come to know the behaviour or action their

opponent took in the past or that the information about

their opponents is perfectly hidden to competitors (Hohzaki

and Maehara, 2010). In both models, the symmetry of

information acquisition is kept between players. In this

paper, we regard a smuggling game as a multi-stage game

with incomplete information. The purpose of this paper

is to introduce the asymmetry of information of players

and evaluate the value of the information.

In the next section, we model our smuggling problem as

a multi-stage game with incomplete information and

formulate it by elucidating the pay-offs both players can

recognize and showing the difference between them. In

Section 3, we solve the optimization problem formulated

in Section 2 and propose an algorithm to derive a perfect

Bayesian equilibrium. In Section 4, we apply the proposed

algorithm to a small size of problem to analyse an

equilibrium point or optimal strategies of players. After

that, we do a sensitivity analysis by a variety of parameter

settings, by which we elucidate the characteristics of the

optimal strategy.

2. Modelling and formulation

We consider the following multi-stage two-person zero-sum

game played by Customs and a smuggler.

A1. Customs and a smuggler take an action per day and

play the game during T days. We define the stage of

the game by the residual days until the last day T.

A2. Customs has K chances of patrolling at most, but

excess chances beyond the residual days are lost in

the case of K4T. The smuggler initially has M40

contraband and wants to smuggle them as much as

possible.

A3. Customs chooses one of patrol (P) or non-patrol

(NP), and the smuggler determines the amount of

contraband to ship from x contraband remaining in

his hand at the present stage.

A4. If the smuggler tries to smuggle y (0pypx) contra-

band and Customs incidentally patrols, Customs can

capture the smuggler with probability p1(y)X0 but

the smuggler succeeds in smuggling with probability

p2(y). Only one of the capture or the success of

smuggling is possible and they are exclusive to each

other, namely, p1(y)þ p2(y)¼ 1. The functions p1(y)

and p2(y) are monotone non-decreasing and mono-

tone non-increasing, respectively, and they satisfy the

following boundary conditions.

p1ð0Þ ¼ 0; p2ð0Þ ¼ 1 ð1Þ

A5. The success of smuggling gives the smuggler reward

1 per contraband and the capture of the smuggler

brings a40 for Customs. The pay-off of the game is

zero-sum, that is, the reward of Customs is the loss of

the smuggler and vice versa. A discount rate b(p1) is

set between the rewards of sequent two days. We

define the pay-off by the reward of Customs.

A6. If the capture of the smuggler does not occur, the

game transfers to the next day. Both players

recognize the happening of the capture at the end

of each stage. After the transition, the smuggler is

informed of the previous strategy of Customs but

Customs does not know which strategy the smuggler

took on the previous day. Therefore, Customs does

not have any information about the reward the

smuggler gets in the process of the game, as well as

the smuggler’s strategy.

A7. The game ends if the capture of the smuggler occurs

or the game reaches the last day T or the last stage 1.

Customs behaves as a maximizer and the smuggler

as a minimizer for the pay-off of the game.
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A state at the beginning of the stage is represented by

a triplet (n, k,x) of the number of stage n, the number

of residual chances for patrolling k and the amount of

residual contraband of the smuggler x. Only the smuggler

recognizes the state but Customs does not. What Customs

knows is n and k, and he anticipates x by his belief. Let us

denote the belief by {qn(x),x¼ 0, 1, . . . ,M}, where qn(x) is

the probability that the smuggler has x contraband at the

current stage n and condition
P

x¼ 0
M qn(x)¼ 1 holds.

Let us confirm the strategies of players in the case

of k40. We denote a mixed strategy of Customs by

p¼ (p1,p2), where p1 or p2 is the probability of patrol (P)

or no-patrol (NP), respectively. A mixed strategy of the

smuggler with x contraband in hand is denoted by

rx¼ (rx(0),rx(1), . . . ,rx(x)). rx(y) is the probability of

taking a pure strategy S(y), which is the smuggling of y

contraband. The smuggler knows his present amount of

contraband, x, and he is able to change his mixed strategy

rx adaptively to amount x¼ 0, . . . ,M. Therefore, the whole

set of the smuggler’s strategies is r¼ {rx,x¼ 0, . . . ,M}.

The feasible regions of their strategies are

P � fðp1; p2Þjp1 þ p2 ¼ 1;p1; p2X0g
for the Customs’ strategy p and

Ox � rxðyÞ; y 2 Ixj
Xx
y¼0

rxðyÞ ¼ 1;

(

rxðyÞX0; y 2 Ix

�
ð2Þ

O � rx;x 2 IMf gjrx 2 Ox; x 2 IMf g

for the smuggler’s strategy r, using notation Ix as a set of

sequential integers Ix¼ {0, 1, . . . ,x} for a positive integer x.

The feasible region O of r has individual regions separated

for x.

Let w(n, k,x; qn) be the expected pay-off of the smuggler,

which is determined by sequentially rational and optimal

strategies of both players after the stage n provided that

Customs has belief qn in the current state (n,k,x). We can

say that the smuggler faces a decision making with the

following pay-off matrix W(n,k,x):

Two rows correspond to the Customs’ strategies, P and

NP. There are originally xþ 1 columns corresponding

to the smuggler’s strategies, S(0), . . . ,S(x), but we write

only two columns for S(0) (we sometimes use notation

NS (No-smuggling) for this strategy) and S(y) as their

representative. We can explain the derivation of elements

in the matrix as follows.

When Customs patrols (P) and the smuggler tries

smuggling y contraband (S(y)), the expected pay-off

ap1(y)�yp2(y) is born at the current stage and the game

transfers to the next stage with probability 1�p1(y). At the

next stage, the allowed number of opportunities of future

patrol decreases by one and the amount of contraband

decreases by y. GP(qn) is the belief that Customs revises

from the current belief qn by taking account of strategy P.

For the second row of NP, Customs keeps the number of

patrols but let the smuggler easily succeed in smuggling of

strategy S(y). The success brings Customs the loss of y

and the game proceeds to the next stage in the state

(n�1,k,x�y). In this case, Customs revises his belief qn to

GN (qn) by taking his strategy NP into account. Because

elements in the first column are given by applying y¼ 0 to

elements in the second column for strategy S(y), we take

the elements in the second column as representative

elements for a general discussion and denote them by

RxðP; yÞ � ap1ðyÞ � yp2ðyÞ þ ð1� p1ðyÞÞ
bwðn� 1; k� 1; x� y;GPðqnÞÞ; ð4Þ

RxðNP; yÞ � �yþ bwðn� 1; k; x� y;GNðqnÞÞ: ð5Þ

Knowing n,k and x, the smuggler recognizes the pay-off

matrix W(n,k,x) and behaves as a minimizer to minimize

the expected pay-off

Xx
y¼0

rxðyÞðp1RxðP; yÞ þ p2RxðNP; yÞÞ ð6Þ

adaptively to his competitor’s strategy p.
We are going to discuss the pay-off of Customs who

knows only n and k. Customs certainly knows an initial

amount of contraband x¼M, which the smuggler

possesses at the initial stage n¼T. At a general stage n,

Customs anticipates the pay-off matrix of Equation (3)

with probability qn(x). The anticipation implies that M�x
contraband have been already shipped. Although the

present value of the pay-off concerning the shipment has

already been lost, Customs has to manage a present

strategy to minimize the pay-off that would be arisen at

present and in the future from now. Customs expects the

total pay-off from the present until the end of the game by

Rðp; r; qnÞ �
XM
x¼0

qnðxÞ
Xx
y¼0

rxðyÞ

� ðp1RxðP; yÞ þ p2RxðNP; yÞÞ ð7Þ

Wðn; k; xÞ ¼ Sð0Þ SðyÞ
P

NP

bwðn� 1; k� 1; x;GPðqnÞÞ ap1ðyÞ � yp2ðyÞ þ ð1� p1ðyÞÞbwðn� 1; k� 1;x� y;GPðqnÞÞ
bwðn� 1; k; x;GNðqnÞÞ �yþ bwðn� 1; k; x� y;GNðqnÞÞ

� �
ð3Þ
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knowing that the smuggler can change his strategy r
corresponding to the amount of his contraband x.

3. Algorithm for the derivation of equilibrium point

The goal of this section is to develop a theory for the

derivation of a perfect Bayesian equilibrium of the game

with incomplete information, which we formulated in the

previous section. Let us start with a discussion about the

present value of the expected pay-off of Customs at Stage

n, given by Equation (7). We say again that Customs is a

maximizer who changes p adaptively to his adversary’s

strategy to maximize the pay-off. Noting that the expected

pay-off of Equation (6) is the same as the expression afterP
y in Equation (7), the minimization of the expression (6)

given x is equivalent to the minimization of the pay-off

R(p,r; qn) with respect to variable rx. As a result, we can

make use of the general procedure for the solution of a

two-person zero-sum matrix game to derive a perfect

Bayesian equilibrium for our game. That is, we can

derive an optimal strategy of Customs p� by a maximin

optimization of R(p,r; qn) and an optimal strategy of the

smuggler r� ¼ {rx�,x¼ 0, . . . ,M} by a minimax optimiza-

tion of the pay-off.

Given the optimal strategy p�, the optimized

value w(n,k,x; qn) after stage n in the state (n,k,x) is

calculated by

wðn; k; x; qnÞ ¼
Xx
y¼0

r�xðyÞðp�1RxðP; yÞ þ p�2RxðNP; yÞÞ

¼ min
y¼0;...;x

fp�1RxðP; yÞ þ p�2RxðNP; yÞg: ð8Þ

We are going to obtain a perfect Bayesian equilibrium,

p�and r�, by the maximin or minimax optimization of the

pay-off R(p,r; qn).
From feasible region (2), we transform minrAOR(p,r; qn)

as follows.

min
rx2Ox;x2IM

Rðp; r; qnÞ ¼
XM
x¼0

qnðxÞmin
y2Ix
fp1RxðP; yÞ

þ p2RxðNP; yÞg

Because the summation with respect to x in the right-

hand side is in effect only for xAQn
þ ¼ {xAIM|qn(x)40},

the maximization problem of the expression above is

formulated by the following linear programming problem,

by which we can derive an optimal patrol plan p�.

ðPPÞ max
p1;p2;fmx;x2Qþn g

X
x2Qþn

qnðxÞmx

s:t: p1RxðP; yÞ þ p2RxðNP; yÞXmx; y 2 Ix; x 2 Qþn ;

p1 þ p2 ¼ 1; p1; p2X0

For comprehensibility, we show you another

formulation by substituting Rx(P, y) and Rx(NP, y) with

definitions (4) and (5):

ðPPÞ max
p1;p2fmx;x2Qþn g

X
x2Qþn

qnðxÞmx

s:t: p1fap1ðyÞ � yp2ðyÞ þ ð1� p1ðyÞÞ

�wðn� 1; k� 1;x� y;GPðqnÞÞg

þ p2f�yþ wðn� 1; k; x� y;GNðqnÞÞg

Xmx; y ¼ 0; . . . ; x;x 2 Qþn ; ð9Þ

p1 þ p2 ¼ 1;

p1; p2 � 0: ð10Þ

From Equation (8), optimal multiplier mx� of (PP) is

nothing but w(n,k,x; qn) for xAQn
þ .

wðn; k; x; qnÞ ¼ m�x; x 2 Qþn : ð11Þ

For xeQn
þ , we have to calculate w(n, k, x; qn) from

the minimization problem (8) and an optimal smuggler’s

strategy {rx�(y), yAIx} by setting rx�(y�)¼ 1 for an

optimal y� of the problem. The case of xeQn
þ implies

that the state (n, k, x) is off the equilibrium path for

belief qn and any smuggler’s strategy has no effect on

the value of the game. Even in such a case, we have to

show a rational strategy of the smuggler as the perfect

Bayesian equilibrium.

Now let us discuss the minimax problem of the pay-off

R(p,r; qn). By transforming the maximization of R(p,r; qn)
with respect to pAP into

max
p2P

Rðp; r; qnÞ ¼ max
XM
x¼0

Xx
y¼0

rxðyÞqnðxÞRxðP; yÞ;
(

XM
x¼0

Xx
y¼0

rxðyÞqnðxÞRxðNP; yÞ
)

the minimization problem of the expression above is

formulated by

ðPSÞ min
frxðyÞ;y2Ix;x2Qþn g;l

l

s:t:
X
x2Qþn

Xx
y¼0

rxðyÞqnðxÞRxðP; yÞpl;

X
x2Qþn

Xx
y¼0

rxðyÞqnðxÞRxðNP; yÞpl;

Xx
y¼0

rxðyÞ ¼ 1; x 2 Qþn ;

rxðyÞX0; y ¼ 0; . . . ; x; x 2 Qþn :
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We can show another formulation using original

definitions of Rx(P, y) and Rx(NP, y), as follows.

ðPSÞ min
frxðyÞ;y2Ix ;x2Qþn g;l

l

s:t:
X
x2Qþn

Xx
y¼0

rxðyÞqnðxÞfap1ðyÞ � yp2ðyÞ

þ ð1� p1ðyÞÞwðn� 1; k� 1; x� y;GPðqnÞÞgpl;X
x2Qþn

Xx
y¼0

rxðyÞqnðxÞf�yþ wðn� 1; k; x� y;GNðqnÞÞpl;

Xx
y¼0

rxðyÞ ¼ 1; x 2 Qþn ; rxðyÞ � 0; y ¼ 0; . . . ; x; x 2 Qþn :

An optimal strategy of the smuggler {rx�(y),y¼ 0, . . . ,x}

is given by solving the problem (PS) for xAQn
þ and by the

evaluation of the minimization of (8) for xeQn
þ , in the

same way as explained before.

There is a relationship of duality between Problem (PP)

and (PS), as known for the solution of a general finite

matrix game. In the concrete, there is a relation

rx(y)¼ vx(y)/qn(x) between dual variable vx(y) correspond-

ing to constraint (9) and variable rx in Problem (PS). A

dual variable corresponding to condition (10) becomes

variable l in Problem (PS). As the problems (PP) or (PS)

possibly have multiple optimal solutions, we cannot say

that the Bayesian equilibrium is uniquely determined.

Nevertheless, we discuss the uniqueness in the Conclusion

section later.

Now we are going to discuss how to revise the belief of

Customs or calculate operators GN and GP on belief qn.

If Customs does not patrol, the capture of the smuggler

never occurs and the game never ends. If the smuggler

has s contraband in his hand at the beginning of stage n

and keeps x at the next stage n�1, he must have smuggled

s�x contraband at stage n. The probability of these

actions is qn(s)rs�(s�x). If Customs patrols and the

smuggler keeps x contraband at the next stage n�1 without
being arrested, the probability of these events is evaluated

by qn(s)rs�(s�x)(1�p1(s�x)) conditioned by no-capture.

Now we have the following formulas to compute operator

GN(qn) by no patrol and GP(qn) by patrol.

GNðqnÞðxÞ ¼
XM
s¼x

qnðsÞr�s ðs� xÞ; ð12Þ

GPðqnÞðxÞ ¼

PM
s¼x

qnðsÞr�s ðs� xÞð1� p1ðs� xÞÞ

PM
z¼0

PM
s¼z

qnðsÞr�s ðs� zÞð1� p1ðs� zÞÞ

¼

PM
s¼x

qnðsÞr�s ðs� xÞð1� p1ðs� xÞÞ

PM
s¼0

qnðsÞ
Ps
u¼0

r�s ðuÞð1� p1ðuÞÞ
ð13Þ

At the beginning of the game or at stage n¼T, Customs

has an initial belief

qT ðMÞ ¼ 1; qT ðxÞ ¼ 0; Max 2 IM : ð14Þ
In a special case of k¼ 0, Customs has only a strategy

NP to choose and then we have w(n,k,x; qn)¼�x for

any n40, x and qn , given by an immediately smuggling

strategy.

Let us recall the procedure of computing the perfect

Bayesian equilibrium discussed so far. We assume that we

have evaluated every value with index n�1, such as

w(n�1, � ), at stage n�1. To solve Problem (PP) or (PS)

for optimal strategy p� or rx�(y), we need the revised belief

GP (qn) or GN(qn) involved in w(n�1, � ). However, to have

belief qn revised by Equations (13) or (12), we need optimal

strategy rx�(y), which is given by solving the problem (PS).

Now we see that the computation for the solution forms

a closed loop of the requirements and the equilibrium

point is difficult to be derived. That is why we need an

approximation algorithm to calculate the perfect Bayesian

equilibrium.

To explicitly indicate that optimal strategies p�,rx�(y) and
optimized value w(n,k,x; qn) are calculated using revised

belief GP(qn) and GN(qn) embedded in w(n�1, . . . ;GP(qn))

and w(n�1, . . . ;GN(qn)), we write p�(GP(qn),GN(qn)),

rx�(y:GP(qn),GN(qn)) and w(n,k,x; qn:GP(qn),GN(qn)). The

next step for the approximation is to discretize belief

{qn(x),x¼ 0, . . . ,M} such that qn(x)AF�{0, 1/m, 2/

m, . . . ,m/m}. Because a discretized belief belongs to a

product set F � F �?F¼FMþ 1 and satisfies conditionP
x¼ 0
M qn(x)¼ 1, the whole set of possible belief has

M þm
m

� �
elements in it. Now we are ready to describe

an approximation algorithm to derive a perfect Bayesian

equilibrium.

(S1) Initialize w(n,k,x; qn) to be 0 for any k, x and

qnAFMþ 1 at stage n¼ 0 and set n¼ 1.

(S2) If n¼T, set k¼K and make the belief be initialized

by qT(M)¼ 1,qT(x)¼ 0(xaM). Go to (S3) and stop.

Obtained w(N,K,M:qT) is the value of the game.

If naT, execute (S3) for all kA{0, 1, . . . ,K} and

qnAFMþ 1.

(S3) By doing (S4) for any q0, q00AFMþ 1 at stage n�1,
calculate p�(q0, q00), rx�(y:q0, q00), w(n,k,x; qn:q

0, q00),
GP(qn)(x) and GN(qn)(x). If q0 ¼GP(qn) and

q00 ¼GN(qn), save p�(q0, q00) as an optimal strategy of

Customs for information set of Customs (n,k; qn),

rx�(y:q0, q00) as an optimal strategy of the smuggler

rx�(y)(yAIx,xAIM) for information set of the smug-

gler (n,k,x; qn) and w(n,k,x; qn:q
0, q00) as value

w(n,k,x; qn). Otherwise, if the conditions above

do not hold for any q0, q00AFMþ 1, there is no

equilibrium point on any path branching from the

information set (n,k; qn).
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(S4) Solve Problem (PP) and (PS) after substituting

w(n�1, . . . ;GP(qn)) and w(n�1, . . . ;GN(qn)) with

w(n�1, . . . ; q0) and w(n�1, . . . ; q00), respectively, and
obtain their optimal solutions p�(q0, q00), rx�(y:q0, q00)
and w(n,k,x; qn:q

0, q00). Revise belief qn to GP(qn) and

GN(qn) by substituting rx�(y:q0, q00) and qn into formula

(13) and (12) for xAIM. Then discretize the revised

belief as follows. Depending on which one of the

periods [0, (1/2m)), [(1/2m), (3/2m)), . . . , [((2k�1)/2m),
((2kþ 1)/2m)), . . . , [((2m�1)/2m), 1] the calculated

value belongs to, give the belief one of values 0,

(1/m), . . . , (k/m), . . . , 1. The resultant values

GP (qn) and GN(qn) must be in set FMþ 1.

(S5) Set n¼ nþ 1. If npT, go back to (S2). Otherwise,

terminate the algorithm.

4. Numerical examples

First, we compare two cases. In Case 1, the probability of

capture p1(y) is high for y¼ 1 and increases approximately

linearly to y larger than 1. In Case 2, the probability p1(y) is

low for y¼ 1, but increases in an exponential form for

yX2. We set m¼ 5 for the discretization of belief in Step

(S4) and b¼ 1, meaning no discount for future’s pay-off.

We also set a¼ 4. In Table 1, we show the setting of p1(y)

and the success probability of smuggling p2(y), where

p1(y)þ p2(y)¼ 1. The last row of the table is for the

tentative expected pay-off ap1(y)�yp2(y) on the coincidence

of patrol and smuggling. Because the tentative pay-off is

non-negative and increases by y in Case 1, the smuggler

would not dare to smuggle myopically when the patrol is

anticipated.

The parameter setting of Case 2 is given by a¼ 2 and

Table 2. Even though Customs patrols, the smuggling

of y¼ 1 contraband gives the smuggler an incentive of

action.

In the next section, we discuss the characteristics of

Bayesian equilibrium by comparing Cases 1 and 2 with

specific parameters (T,K,M)¼ (3, 2, 2). In Section 4.2, we

change a triplet (T,K,M) of the number of stages, the

number of opportunities for patrol and the initial amount

of contraband of the smuggler to obtain the optimal

strategy and the value of the game in Cases 1 and 2. Other

than the examples, we take another game with complete

information, where players get information about the

strategies their opponent took at the previous stage and

then recognize the present state (n,k,x), and quantitatively

analyse the value of information by comparing the two

kinds of games. Finally, we analyse the effect of discount-

ing the pay-off on equilibrium by changing the discount

rate b for Case 1 in Section 4.3.

4.1. Equilibrium in the case of (T,K,M)¼ (3, 2, 2)

We show an equilibrium of Case 1 on the game tree in

Figure 1. Figure 2 is for Case 2. A black-coloured origin

represents initial information set (N,K,M). The origin has

two branches, which represent two pure strategies of

Customs, {P,NP}, with two white nodes. On the white

node, where the smuggler has x contraband in hand, the

smuggler has to choose one of xþ 1 options or pure

strategies without knowing the selection of Customs. These

branching generate all combinations of strategies of two

players in the same turn at a stage. In the figures, we

abbreviate the smuggler’s strategy S(y) to Sy for simplicity.

Customs makes his decision by anticipating the amount

of contraband in the smuggler’s hand based on the history

of his strategies and no occurrence of the capture of the

smuggler in the past. On the other hand, the smuggler

chooses his strategy unknowing of his opponent’s choice.

The player cannot distinguish an individual node from

the others in the same information set denoted by an oval.

As a symbol of information set, we also use a line

connecting nodes at the last stage n¼ 1 for simplicity. In

the oval or beside the line, we write recognizable state of

the information set for each player: (n,k) for Customs and

(n, k,x) for the smuggler.

At Stage n¼ 3, we draw a triangle and a square, which

symbolize the capture of the smuggler and the fork

between capture and non-capture, respectively, and possi-

bly occur on the path with the combination of patrol

and smuggling. However, a branch with the capture is

substituted with a broken line at the later stages, for

simplicity. The game at the fork or the square steps

forward to the triangle with probability p1(y) and goes to

another branch with probability p2(y)¼ 1�p1(y). This

branch comes from chance move by natural stochastic

law. Because optimal strategies of players are evident at

the last stage n¼ 1, we omit branches other than the

equilibrium path. For example, strategy P of Customs is

always optimal in the case of n¼ k. In the same situation

Table 1 Probability of capture, success probability of smug-
gling and tentative payoff (Case 1)

Y 0 1 2 3 4 5

p1(y) 0 0.34 0.45 0.56 0.658 0.736
P2(y) 1 0.66 0.55 0.44 0.342 0.264
ap1(y)�yp2(y) 0 0.699 0.700 0.921 1.264 1.622

Table 2 Probability of capture, success probability of
smuggling and tentative payoff (Case 2)

y 0 1 2 3 4 5

p1(y) 0 0.1 0.45 0.7 0.8 0.85
p2(y) 1 0.9 0.55 0.3 0.2 0.15
ap1(y)�yp2(y) 0 �0.7 �0.2 0.5 0.8 0.95
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of n¼ k, the smuggler must choose S0 in Case 1 and S1 in

Case 2 against his opponent’s strategy P, as seen from

Tables 1 and 2.

To illustrate the equilibrium path, we make a branch or

a pure strategy with positive selection probability bold.

Only a bold branch from an information set means that the

optimal selection probability of the pure strategy is one.

When a mixed strategy is optimal, we add the optimal

probability of taking the branch beside it. In the same

information set, the same number of branches goes out of

every node and an optimal mixed strategy for the branches

from a node has to be applied to the other nodes, as

we know about the game tree. In Figure 1, two branches

{P,NP} from every node in the information set (2, 1) have

their probabilities {0.426, 0.574}. In a similar manner,

we can see that optimal mixed strategies at Stage 3 are

probabilities {0.563, 0.437} for Customs’ strategy {P,NP}

and {0.76, 0,0.24} for the smuggler’s strategy {S0,S1,S2} in

Case 1, and {0.667, 0.333} for {P,NP} and {0.423, 0.577, 0}

for {S0,S1,S2} in Case 2. Below we describe the

characteristics of optimal strategy in Cases 1 and 2.

Case 1

(1) The smuggler attitude is passive because of high

capture probability. Especially, no-smuggling strategy

is myopically optimal for the smuggler when Customs

patrols. As seen from Figure 1, Customs always takes
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Figure 1 Game tree and equilibrium (Case 1).
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strategy Pr(P)¼ 1 and the smuggler never tries to

smuggle on the equilibrium path after information set

(2, 2) of n¼ k. Customs could take NP in (3, 2) or (2, 1).

On the basis of the estimation, the smuggler mixes the

strategies S2 and S0 at (3, 2, 2) and (2, 1, 2) because

strategy S2 brings him a little larger reward than S1

against NP but approximately the same reward

ap1(y)�yp2(y) against P. The selection probability of

S0 is larger than that of S2. Concerning the ratio of the

number of allowed patrols to the number of residual

stages, k/n, state (3, 2, 2) is larger than (2, 1, 2), and then

the optimal probability of no-smuggling in the former

state is larger than that in the latter one.

(2) Customs estimates the passive behaviour of the

smuggler by the reason explained above and then

makes patrol probability Pr(P) in (3, 2) and (2, 1) lower

in Case 1 than in Case 2, where the active behaviour of

the smuggler is estimated, as we see later. On the basis

of the optimal selection of S0 and S2 by the smuggler at

initial information set (3, 2, 2), Customs has the belief

that q2(2)¼ 4/5, q2(1)¼ 0, q2(0)¼ 1/5 at (2, 1), that is,

the guess that the smuggler would have 2 contraband

or nothing remaining at the present. Because any

strategy of patrol has no effect on no-contraband state

of the smuggler (2, 1, 0) at Stage 2, Pr(P)¼ 0.426 is

the Customs’ behaviour optimally corresponding to the
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Figure 2 Game tree and equilibrium (Case 2).
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2-contraband state (2, 1, 2) without worrying about the

state (2, 1, 0). It would be helpful that we show the

result by the complete-information game (CIG) with

the same setting of parameter as our incomplete-

information game (ICIG), where Customs recognizes

state (n,k,x) of stage n, the residual number of allowed

patrols k and the amount of residual contraband of the

smuggler x. According to the result of the CIG, the

probability of patrol in the state (n, k,x)¼ (2, 1, 2),

(2, 1, 1) and (2, 1, 0) is 0.426, 0.371 and 0, respectively.

Optimal patrol strategy in the state (2, 1) of the ICIG is

the same as that in the state (2, 1, 2) of the CIG.

Therefore, optimal smuggling strategy in initial state

(3, 2, 2), (Pr(S0),Pr(S1),Pr(S2))¼ (0.76, 0, 0.24), is the

same for both the ICIG and the CIG. Thus, Customs,

who selects strategy P at initial stage, has the perfect

anticipation about the smuggler’s optimal strategy

since then and makes an optimal plan of patrolling

in (3, 2) of the ICIG as same as in (3, 2, 2) of the CIG,

that is, (Pr(P),Pr(NP))¼ (0.563, 0.437). Customs who

selects strategy NP at the initial stage keeps strategy P

at all stages since then, which dominates any other

patrol strategy, and therefore he does not need any

information about the smuggler’s behaviour. In result,

patrol strategy in the initial state (3, 2), Pr(P)¼ 0.563,

in the ICIG is the same as in the CIG and the value

of the ICIG, w(3, 2, 3;q3)¼�0.479, entirely equal the

value of the CIG.

Case 2

(1) In this case, the smuggler gains some reward by

smuggling strategy S1 and S2 even when Customs

patrols and then he would have an active behaviour.

That is why the probability of patrolling in information

set (3, 2) and (2, 1) in Case 2 is larger than in Case 1. By

optimal smuggling strategy of taking S0 or S1 in (3, 2),

Customs has his belief q2(2)¼ 2/5, q2(1)¼ 3/5, q2(0)¼ 0

in (2, 1). The belief leads him to the estimation that the

game steps forward to states (2, 1, 2) or (2, 1, 1) with

positive probability.

(2) In the state (2, 1, 2), the smuggler had better smuggle

one contraband (S1) at sequent stages n¼ 2 and 1 such

that he can expect some reward against the patrol by

Customs. After state (2, 1, 1), he optimally smuggles

once by sequential strategies (S0,S1) or (S1,S0) during

two stages. Taking account of the possibility, Customs

takes strategy Pr(P)¼ 0.5, which is the same as optimal

patrol strategy in the state (2, 1, 1) of the CIG. In the

state (2, 1, 1), the same pay-off w(2, 1, 1;q2)¼�0.85 is

brought for both the ICIG and the CIG. In (2, 1, 0), the

pay-off is zero for both games, of course.

Let us confirm again that if Customs selects NP in

state (3, 2), he should always patrol (P) afterwards

and that he never needs any information about his

opponent. Optimal pay-offs in states (2, 2, 2), (2, 2, 1)

and (2, 2, 0), which are reached by the strategy NP

from (3, 2), are �1.33, �0.7 and 0, respectively, for

both the CIG and the ICIG.

At Stage n¼ 2, there is only the difference between the

ICIG and the CIG in the information set (2, 1, 2). The

belief of q2(2)¼ 2/5 and q2(1)¼ 3/5 makes Customs

estimate the transition of the game from the initial state

(3, 2, 2) to (2, 1, 2) with probability 2/5. The patrol

strategy Pr(P)¼ 0.5 is optimal in (2, 1, 1) but not in

(2, 1, 2). Therefore, the expected pay-off in this state is

w(2, 1, 2;qn)¼�1.65 for the ICIG, which is a little

smaller than the pay-off for the CIG �1.629.
Even in the ICIG, Customs knows the initial state

(3, 2, 2) at the first stage n¼ 3 and then recognizes his

pay-off matrix, which is put in the upper position

below, by deliberating on the rational strategies coming

in future, as explained above.

S0 S1 S2

P

NP

�1:65 �1:465 �0:2
�1:33 �1:7 �2

� �
S0 S1 S2

P

NP

�1:629 �1:465 �0:2
�1:33 �1:7 �2

� �

The matrix is generated in such a way that w(2, 1, 2;

q2)¼�1.65 is filled up in (1, 1)-entry for the combina-

tion of strategy P and S0, for example. By solving the

matrix game, Customs concludes that he would have

the value of the game w(3, 2, 2;q3)¼�1.543 by an

optimal mixed strategy of patrol Pr(P)¼ 0.667. On the

other hand, the CIG has another pay-off matrix with

�1.629 as (1, 1)-entry, mentioned above, which is the

only different entry from the ICIG. The pay-off matrix

for the CIG is put below the matrix of the ICIG.

From the matrix, Customs obtains optimal strategy

Pr(P)¼ 0.714 and the value of the game �1.537, which
is a little larger than the ICIG.

There are some information sets such as (n, k)¼ (2, 2),

where Customs evidently does not need any information

even in the ICIG. In Case 1, Customs uses those rational

estimation about the smuggler’s strategy and he is able to

choose the best strategy without any information about his

opponent’s behaviour as if he knew, as we analyse before.

On the other hand, a small shortage of rationality caused

by no information in the process makes a difference

between the ICIG and the CIG, and Customs is driven to

take a little worse strategy in Case 2.

4.2. Equilibrium in other cases of (T, K,M)

Here we compare the CIG and the ICIG to evaluate the

value of information. We solve the game for every
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combination (T,K,M) of T¼ 2, . . . , 4,KoT and

M¼ 1, . . . , 4, and list the value of the game with the

parameter setting of Case 1 for two kinds of games

(the CIG and the ICIG) in Table 3a. Upper figures are for

the CIG and lower ones for the ICIG. All figures coincide.

Table 3b shows optimal patrol probability Pr(P) at the

initial stage in Case 1, which is the same for both the CIG

and the ICIG. We take the example of (T,K,M)¼ (3, 2, 2)

in Case 1 and analyse why there is no difference between

optimal strategies for the two games. As seen from

Tables 3a and 3b, Customs can perfectly anticipate the

optimal strategy of the smuggler even in the ICIG as if he

acted in the CIG and loses nothing in all cases of (T,K,M).

Now we conclude that the information Customs loses has

no value in many cases.

From Table 3a, we can see the monotone decreasingness

for the number of stages T and the amount of contraband

M, and the monotone increasingness for the number of

allowed patrols K as the characteristics of the value of the

ICIG. Table 3b shows us the properties of optimal strategy

that the patrol probability Pr(P) decreases for larger T and

increases for larger K. These properties are self-evident.

The probability increases in a monotonic manner for

M¼ 1, 2 and 3 but decreases for larger M. Even if the

smuggler can afford to smuggle more, he becomes less

active in fear of the encounter with the patrol. The

tendency on the smuggling strategy depresses the increase

of Pr(P).

In Case 2, Tables 4a and 4b show the value of the game

and the optimal probability of patrol, respectively, for the

CIG and the ICIG.

Customs with no information tends to hold more chances

of patrol untouched at the earlier stages and keep them for

use at the later stages in the ICIG, and the probability of

Table 3a Value of the game in Case 1 for the CIG (upper) and
the ICIG (lower)

T K M

1 2 3 4

2 1 �0.371 �0.851 �1.3 �1.727
�0.371 �0.851 �1.3 �1.727

3 1 �0.541 �1.194 �1.814 �2.412
�0.541 �1.194 �1.814 �2.412

2 �0.179 �0.479 �0.747 �0.988
�0.179 �0.479 �0.747 �0.988

4 1 �0.639 �1.379 �2.089 �2.78
�0.639 �1.379 �2.089 �2.78

2 �0.323 �0.797 �1.229 �1.629
�0.323 �0.797 �1.229 �1.629

3 �0.095 �0.301 �0.48 �0.632
�0.095 �0.301 �0.48 �0.632

Table 3b Optimal probability of patrol at the initial stage in
Case 1 for the CIG (upper) and the ICIG (lower)

T K M

1 2 3 4

2 1 0.371 0.426 0.433 0.432
0.371 0.426 0.433 0.432

3 1 0.27 0.299 0.302 0.302
0.27 0.299 0.302 0.302

2 0.483 0.563 0.575 0.572
0.483 0.563 0.575 0.572

4 1 0.213 0.23 0.232 0.232
0.213 0.23 0.232 0.232

2 0.398 0.445 0.452 0.45
0.398 0.445 0.452 0.45

3 0.532 0.629 0.643 0.64
0.532 0.629 0.643 0.64

Table 4a Value of the game in Case 2 for the CIG (upper) and
the ICIG (lower)

T K M

1 2 3 4

2 1 �0.85 �1.621 �1.991 �2.307
�0.85 �1.629 �1.991 �2.307

3 1 �0.9 �1.761 �2.557 �3.086
�0.9 �1.767 �2.57 �3.09

2 �0.8 �1.537 �2.166 �2.398
�0.8 �1.543 �2.166 �2.398

4 1 �0.925 �1.823 �2.685 �3.488
�0.925 �1.825 �2.7 �3.5

2 �0.85 �1.652 �2.392 �3.017
�0.85 �1.655 �2.416 �3.057

3 �0.775 �1.487 �2.123 �2.649
�0.775 �1.49 �2.147 �2.697

Table 4b Optimal probability of patrol at the initial stage in
Case 2 for the CIG (upper) and the ICIG (lower)

T K M

1 2 3 4

2 1 0.5 0.714 0.364 0.357
0.5 0.714 0.364 0.357

3 1 0.333 0.356 0.561 0.233
0.333 0.333 0.574 0.243

2 0.667 0.693 1 0.417
0.667 0.667 1 0.421

4 1 0.25 0.258 0.29 0.44
0.250 0.25 0.25 0.381

2 0.5 0.512 0.577 0.9
0.5 0.5 0.54 0.79

3 0.75 0.76 0.839 1
0.750 0.751 0.817 0.889
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patrol Pr(P) at the initial stage is smaller than in the CIG

in many cases. We cannot easily explain the sensitivity of

Pr(P) in Case 2, where the smuggler becomes more active

than in Case 1. Let us take the following example. For the

case (3, 2,M) in the CIG, Pr(P) changes to 0.667, 0.693, 1

and 0.417 forM¼ 1, 2, 3 and 4, respectively. We can explain

the sensitivity as follows. For M¼ 1, 2, Customs increases

Pr(P) by his anticipation that the smuggler would take

more active behaviour. In the case of M¼ 3, the smuggler

can repeat the efficient smuggling of one contraband, S1,

through all stages and then Customs takes strategy

Pr(P)¼ 1. By the same reason, Pr(P) is comparatively high

in the cases of (T,M)¼ (2, 2), (4, 4). Customs focuses on the

hitting of smuggling by patrolling for M¼ 1B3. For more

M, Customs is interested mainly in the amount of

contraband the smuggler tries to smuggle on the day of

patrol, from the standpoint of the expected pay-off.

Customs wants to hit the smuggling with more contra-

band than S1 by his patrol and decreases Pr(P) a little. The

probability Pr(P) does not change monotonically for M

more than 3.

4.3. Effect of discounting future’s pay-off

Here, let us compare two versions of Case 1 with

no-discount of b¼ 1 and with discount b¼ 0.5. Other

parameters except b are fixed in the two versions.

We already have Tables 3a and 3b as the results of the

no-discount version. We compute equilibriums for

the discount version of the game and compare two

versions in terms of the value of the game in Table 5a.

Tables 5b and 5c show the comparison in terms of

optimal patrol strategy and optimal smuggling strategy,

respectively.

Table 5a Value of the game for the no-discount version
(upper) and the discount version (lower)

T K M

1 2 3 4

2 1 �0.371 �0.851 �1.300 �1.727
�0.227 �0.541 �0.830 �1.101

3 1 �0.541 �1.194 �1.814 �2.412
�0.278 �0.638 �0.975 �1.295

2 �0.179 �0.479 �0.747 �0.988
�0.063 �0.182 �0.287 �0.379

4 1 �0.639 �1.379 �2.089 �2.780
�0.290 �0.658 �1.003 �1.333

2 �0.323 �0.797 �1.229 �1.629
�0.089 �0.240 �0.374 �0.495

3 �0.095 �0.301 �0.480 �0.632
�0.018 �0.065 �0.106 �0.139

Table 5b Optimal patrol probability at the initial stage for the
no-discount version (upper) and the discount version (lower)

T K M

1 2 3 4

2 1 0.371 0.426 0.433 0.432
0.455 0.541 0.553 0.551

3 1 0.270 0.299 0.302 0.302
0.425 0.504 0.516 0.514

2 0.483 0.563 0.575 0.572
0.552 0.673 0.692 0.688

4 1 0.213 0.230 0.232 0.232
0.418 0.497 0.509 0.507

2 0.398 0.445 0.452 0.450
0.536 0.652 0.670 0.666

3 0.532 0.629 0.643 0.640
0.578 0.717 0.738 0.733

Table 5c Optimal smuggling probability for {S0, . . . ,SM} at the initial stage for the no-discount version (upper)
and the discount version (lower)

T K M

1 2 3 4

2 1 {0.629, 0.371} {0.574, 0, 0.426} {0.567, 0, 0, 0.433} {0.568, 0, 0, 0, 0.432}
{0.773, 0.227} {0.73, 0, 0.270} {0.723, 0, 0, 0.277} {0.725, 0, 0, 0, 0.275}

3 1 {0.73, 0.27} {0.701, 0, 0.299} {0.698, 0, 0, 0.302} {0.698, 0, 0, 0, 0.302}
{0.815, 0.185} {0.787, 0, 0.213} {0.783, 0, 0, 0.217} {0.784, 0, 0, 0, 0.216}

2 {0.821, 0.179} {0.76, 0, 0.24} {0.751, 0, 0, 0.249} {0.753, 0, 0, 0, 0.247}
{0.937, 0.063} {0.909, 0, 0.091} {0.904, 0, 0, 0.096} {0.905, 0, 0, 0, 0.095}

4 1 {0.787, 0.213} {0.77, 0, 0.23} {0.768, 0, 0, 0.232} {0.768, 0, 0, 0, 0.232}
{0.825, 0.175} {0.799, 0, 0.201} {0.795, 0, 0, 0.205} {0.796, 0, 0, 0, 0.204}

2 {0.824, 0.176} {0.791, 0, 0.209} {0.786, 0, 0, 0.214} {0.787, 0, 0, 0, 0.213}
{0.94, 0.060} {0.922, 0, 0.078} {0.919, 0, 0, 0.081} {0.92, 0, 0, 0, 0.080}

3 {0.905, 0.095} {0.849, 0, 0.151} {0.84, 0, 0, 0.16} {0.842, 0, 0, 0, 0.158}
{0.982, 0.018} {0.967, 0, 0.033} {0.965, 0, 0, 0.035} {0.965, 0, 0, 0, 0.035}
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The discount of the pay-off gives Customs some

advantage to become active for patrol and the smuggler’s

activity is depressed at the early stage. In the discount

version, active Customs lets the smuggler hesitate to

smuggle at the early stage, and even though the smuggler

is allowed to become active and gets some profit at the late

stages the reward would be discounted. The value of the

game increases in the discount model, although the value

is still negative. The increasing rate of the value is more

distinguishing for the game with the larger number of

stages or larger T.

5. Conclusion

This paper deals with a smuggling game with multiple

stages. Customs is allowed to patrol within the limited

number of chances and obtain reward by the capture of a

smuggler. The smuggler decides the amount of contraband

to try to smuggle at each stage and gets reward depending

on the amount of contraband he succeeds to smuggle. The

pay-off of the game is assumed to be zero-sum. In almost

all past studies on the smuggling game, they focus on when

the smuggler should take the action of smuggling within

the limited number of chances. From the practical point of

view, the smuggler is interested in his benefit by smuggling

as much contraband as possible. By this reason, we adopt

the strategy on the amount of contraband for the smuggler.

Furthermore, we model our problem as a multi-stage game

with incomplete information, where Customs cannot

obtain information about the past behaviour of the

smuggler but the smuggler gets information about

Customs. Information acquisition is the key to make the

game practical but many researchers have not taken the

assumption on information acquisition or the asymmetry

of information in their models so far. We embed the

asymmetrical information in the game to evaluate the value

of the information and analyse the effect of the informa-

tion on optimal strategy.

In this paper, we clarify the difference between the

pay-offs two players recognize and formulate the game

with incomplete information using the belief of Customs

on the amount of contraband. We propose a theory and

a numerical algorithm to derive the perfect Bayesian

equilibrium of the game. Generally speaking, Customs

stands on more disadvantageous position for lack of

information and the value of the game is estimated to

become smaller than the game without the information

asymmetry. In some cases, however, we show that Customs

exactly anticipates the rational behaviour of the smuggler

and responds to it in such a rational manner that he does

not lose anything. Through these examples and the

sensitivity analysis, we elucidate some properties of optimal

strategy. Many smuggling games studied so far have

multiple stages as our model does, but it was not easy or

was never tried to solve the games by the concept of

perfect Bayesian equilibrium. The methodology proposed

in this paper could be one of the effective approaches to

evaluate the value of information involved in the smuggling

game.

The proposed method is an approximation numerical

algorithm. As seen in Sections 4.1 and 4.2, the algorithm

seems to perform well for the problem with the compara-

tively small number of stages T¼ 3 or 4. In order to obtain

the value of the game at the initial state (T,K,M), we use

not the optimal value of the objective of Problem (PP),

which discretized belief qn(x) directly affects, but given by

constraint (9) in the formulation. This might make the

approximation algorithm work.

Finally, let us mention the uniqueness of the Bayesian

equilibrium in our game. We could not prove the

uniqueness of the perfect Bayesian equilibrium. We use

the linear programming problems (PP) and (PS) to derive

the equilibrium. There is no wonder that the problems

could have multiple optimal solutions. However, in

Sections 4.1 and 4.2, we showed that optimal solutions of

our model with incomplete information are very similar to

the solutions of the complete-information model, for which

we proved in Hohzaki (2011) that optimal solutions are

basically unique with the exception of special cases. Thus,

we reasonably think that the equilibrium of this model is

also uniquely determined in many cases.

From another point of view, we could discuss the

uniqueness in this way. We could imagine that there are the

following relations among elements in the pay-off matrix

of Equation (3), although we could not prove them

practically.

bwðn� 1; k� 1; x;GPðqnÞÞpap1ðyÞ
� yp2ðyÞ þ ð1� p1ðyÞÞ
�bwðn� 1; k� 1; x� y;GPðqnÞÞ; ð16Þ

bwðn� 1; k; x;GNðqnÞÞX� y

þ bwðn� 1; k;x� y;GNðqnÞÞ; ð17Þ

bwðn� 1; k� 1; x;GPðqnÞÞ
pbwðn� 1; k; x;GNðqnÞÞ; ð18Þ

ap1ðyÞ � yp2ðyÞ þ ð1� p1ðyÞÞ
�bwðn� 1; k� 1; x� y;GPðqnÞÞ
4� yþ bwðn� 1; k; x� y;GNðqnÞÞ: ð19Þ

In inequality (16), the left-hand side and the right-hand

side represent the rewards that Customs expects by wasting

a chance of patrol against the smuggler’s no-smuggling

strategy and by the coincidence of patrolling and smug-

gling, respectively. Hence, the right-hand side would be

larger than the left-hand side. Similarly, other inequalities

also seem to be valid. If the relations (16)-(19) hold, they

restrict the existence of equilibrium point and lessen the
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number of equilibriums, even though the game has

multiple equilibriums.
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