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Abstract— The present paper proposes the learning control
method for the throwing manipulation which can control not
only the position but also the orientation of the polygonal object
more accurately and robustly by low-degree-of-freedom robotic
arm. We show experimentally the validity of the proposed
control method with the one-degree-freedom robotic arm. We
also demonstrate the usefulness of the throwing manipulation
by applying it to sorting task and assembly task on experiments.

I. INTRODUCTION

In the present logistics systems or automated assembly
lines, many conveyors and vehicles are used for transporting
packages or parts, which make the speed of the physical
distribution and the production flow be slow and the plant
and equipment costs be high. Transportation by throwing
objects can produce the following advantages: (1) mechanical
equipments are simplified or less required; (2) flexibility of
the systems is enhanced; and (3) the transportation processes
are speeded up [3]. We consider the applications of the
throwing manipulation to transporting, orienting, sorting and
assembling various types of objects.

Fig. 1 shows one of the application examples, in which a
one joint robotic arm throws objects with various orientation
carried by a belt-conveyer and sorts them with appropriate
orientation in a storage pallet with an array of nests, each
nest holding a single object. The objects in the storage pallet
will be then stored in a warehouse or will be grasped by a
robot gripper in assembly lines.

Instead of a manipulation of an object with grasp, the
throwing manipulation has drown attention recently in the
field of robotics [1], [7], [8], [9], [10]. This is because the
throwing manipulation cannot only manipulate the object
outside the movable range of the robot, but also manipulate
the position and orientation of the object arbitrarily by a
robotic arm with fewer control inputs.

Lynch et al [5], [6] present the motion planning for
the dynamic manipulation such as throwing an object and
propose the open-loop controller based on nonlinear opti-
mization techniques. However, they do not aim at throwing
the object accurately and robustly. The experimental results
show that the controller is subject to the modeling error and
sensing error. Aboaf [2] applies a learning control method
to the throwing of a point mass object to overcome these
problems. However, constraints on dynamical robot system
and actuator’s performance limits, etc are not considered
to find control inputs. The authors [7] propose the control
method for throwing point mass object accurately, which
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combines the learning control techniques and the nonlinear
optimization techniques. As far as I know, there has been
no work which takes into consideration the orienting a
polygonal object accurately by a throwing manipulation,
which is very important in the case of sorting and assembling
various types of objects, as shown in Fig. 1.

The present paper proposes a learning control method for
the throwing manipulation which can control not only the
position but also the orientation of the polygonal object
more accurately and robustly to uncertainties. We show
experimentally the validity of the proposed control method
and the feasibility of assembly process by the throwing
manipulation.

The paper is organized as follows: In Section III we
study the dynamical constraint on the throwing manipulation.
Section IV presents the motion planning by optimization,
and Section V proposes the learning control method. Finally,
Section VI presents experiments with a one-degree-freedom
robotic arm.

II. NOTATION AND ASSUMPTIONS

We consider a throwing manipulation of a polygonal rigid-
object by the rotational one-degree-of-freedom robotic arm
in the vertical plane, as shown in Fig. 2.

A reference frame x-y is fixed at the pivot point of the
robotic arm. The gravitational acceleration −g < 0 acts in
the −y direction. The position and orientation of the object
in the x-y frame is described as (x, y, φ). The angle of the
arm is θ, which is set to 0 deg when the arm is horizontal.
The top surface of the arm intersects with the pivot point.
The arm throws the object by counterclockwise rotation. It
is assumed that the thrown object is captured by a storage
pallet fixed at a goal without slipping, rolling or rebounding
in order to simplify the analysis.

A frame u-v is located on the center of mass of the object,
where the +v direction is opposite to gravity when the arm
angle is θ = 0. The moment of inertia of the object and its
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Fig. 2. Notation for throwing manipulation

mass are J and m, respectively. The polygonal object makes
line contact with the arm surface, and the vertices of the
contacting edge are A and B. The distance in the direction
of u between the object center of mass and the vertices A
and B are lA and lB , respectively. The height of the center
of mass from the arm surface is d. The distance between the
object center of mass and the pivot point is l. When the arm
is horizontal, the x location of the object center of mass in
the reference frame is r.

The stoppers with a sharp edge are rigidly attached to the
top surface of the arm to stop the object from sliding on the
surface. We assume that there are no friction between the
object and the stoppers.

III. THROWING MANIPULATION

The motion of a throwing manipulation is divided broadly
into two phases before and after an object’s release.

A. Motion before Object’s Release

The motion of the object relative to the arm is constrained
in order not to slip, roll or break contacts before the object’s
release. The motion of the arm is also constrained by the
joint actuator performance.

1) Object Constraints: Since the object does not slide on
the arm surface by the stoppers, we consider only the vertical
motion with respect to the arm surface and the rolling motion
about the vertices A and B.

The normal reaction force N acting on the object can be
described as

N = mrθ̈ − mdθ̇2 + mgcθ (1)

The reaction moment MA and MB from the arm about
each vertex A and B can be described as, respectively,

MA = Jθ̈ − mlArθ̈ + md2θ̈

+ mlAdθ̇2 + mdrθ̇2 − mlAgcθ − mdgsθ (2)

MB = Jθ̈ + mlBrθ̈ + md2θ̈

− mlBdθ̇2 + mdrθ̇2 + mlBgcθ − mdgsθ (3)

where sθ = sin θ and cθ = cos θ.
To achieve the stable throwing, the robotic arm has to

accelerate such that there is no relative motion between the

object and the arm before the object’s release, which is
called the dynamic grasp. We take into account the following
constraints to achieve the dynamic grasp.

(i) Contact Constraints; which make the object maintain
the contact with the surface of the arm.

N(t) > 0 (4)

(ii) Un-rolling Constraints; which prevent the object from
rolling about the vertices A and B.

MA(t) < 0 (5)
MB(t) > 0 (6)

2) Arm Constraints: The arm is subject to the constraints
on the actuator performance and the robot mechanism.

(i) Joint Angle Constraints

θmin < θ(t) < θmax (7)

To release the object in the right half space, we set
θmax = π/2 and θmin = −π/2, respectively.

(ii) Actuator’s Torque-Velocity Limits

θ̇min < θ̇(t) < θ̇max (8)
τmin < τ(t) < τmax (9)

τmax = ξ(θ̇max) (10)

where (10) shows the relationship between the max-
imum torque and maximum velocity of an actuator,
which is determined by the actuator’s operation range.

B. Motion after Object’s Release

After the object’s release, the object’s motion during
a free-flight is determined by the arm’s state (θt, θ̇t), a
throwing radius lt at a release point and a flight time tf .

Since we have four variables (θt, θ̇t, lt, tf ) as parameters
in the throwing manipulation, the one-joint robotic arm can
control four object’s state variables in a six-dimensional
planar state space (x, y, φ, ẋ, ẏ, φ̇) through one throwing.

In this paper, in addition to the object’s position and
orientation (x, y, φ), we choose the vertical velocity ẏ at
a goal as the controlled object’s variables. By specifying
an appropriate velocity ẏ, we can find object paths with
various loci which reach to the same object’s position and
orientation, which helps to plan the object’s path so as to
avoid obstacles in front of the goal. We can also adjust an
impact velocity at landing. The condition for the velocity at
the goal expands the feasibility of various throwing tasks.

We define the object’s state variables in a flight time tf ,
which can be controlled by the one-joint robotic arm, as

z = [ x(tf ), y(tf ), φ(tf ), ẏ(tf ) ]T = g(u) ∈ �4, (11)

which can be expressed by free-flight ballistic equations
using parameters u = [ θt, θ̇t, lt, tf ]T ∈�4.

The object’s four state variables z is uniquely de-
termined by specifying the four-dimensional parameters
(θt, θ̇t, lt, tf ), and vice versa. If we move the robotic arm
so as to achieve the arm’s state (θt, θ̇t) at a release point,



then the object on the arm surface at a throwing radius lt can
be thrown to a desired state z in a time tf after the object’s
release. In the next section, we present the motion planning
of the robotic arm.

IV. MOTION PLANNING

For a given initial state of the object and the robotic
arm, the motion planning problem is to find a robotic arm’s
trajectory to throw the object to the goal state under the
constraints on the dynamic grasping and robotic arm motion.

A. Joint Trajectory Parameterization with B-splines

We use uniform cubic B-splines to represent the joint
trajectory since the continuity of the trajectory between
adjacent B-spline segments is guaranteed [4].

The motion time interval [0, tt] from the start of the arm’s
motion until just before the object’s release is divided into n
knots with evenly spaced in time, ∆t, such as t0(=0) < t1 <
· · · < tn(= tt). The joint trajectory θi(t) (i = 0, 1, · · · , n)
on each interval [ti, ti+1] is expressed by

θi(s) =
i+2∑

j=i−1

θ̂jBj(s) (12)

where t(s) = ti + s∆t, (0≤ s≤ 1), and θ̂j and Bj(s) are
the control points and basis functions of the uniform cubic
B-spline. The final joint angle is equivalent to the throwing
angle such as θn = θt.

The release time tt (= tn =n∆t) can be freely chosen. For
a given n, ∆t is free. Since the cubic B-splines lie within
the convex hull formed by the control points θ̂j , the joint
trajectory (12) passes near the control points. To obtain an
optimal arm trajectory, we optimize the control points

θ̂ = [ θ̂−1, θ̂0, · · · , θ̂n+1 ]T ∈ �n+3 (13)

and the time ∆t (< ∆tmax) including some of the joint’s
initial and final states by formulating the motion planning
problem as a constrained optimization programming prob-
lem. We show the constraints and objective function of the
optimization programming problem below.

B. Finite-dimensional Constraints
To prevent the robotic arm from violating the constraints

on the dynamic grasping due to unknown disturbances which
are not shown in the nominal model and from saturating
control inputs, we find the joint trajectories which satisfy
constraints (4)∼(9) with sufficient tolerance. We introduce
margin variables ∆N, ∆MA, ∆MB, ∆θ, ∆θ̇, ∆τ into each
constraints, respectively, and maximize the magnitudes of the
margin variables in the optimization problem.

We rewrite the dynamic grasping constraints (4)∼(6) by
using margin variables ∆N, ∆MB > 0, ∆MA < 0. In
addition, substituting (12) into them yields finite-dimensional
constraints sampled at the knot points t0, · · · , tn as

N
(
θi,θ̇i,θ̈i

)
> ∆N, i = 0, · · · , n (14)

MA

(
θi,θ̇i,θ̈i

)
< ∆MA, i = 0, · · · , n (15)

MB

(
θi,θ̇i,θ̈i

)
> ∆MB, i = 0, · · · , n (16)

Similarly, the arm’s motion constraints (7)∼(9) can be
converted into finite-dimensional constraints by using margin
variables ∆θ, ∆θ̇, ∆τ > 0 as follows:

θmin+∆θ < θi < θmax−∆θ, i=0, · · · , n (17)

θ̇min+∆θ̇ < θ̇i < θ̇max−∆θ̇, i=0, · · · , n (18)

τmin+∆τ <τ
(
θi,θ̇i,θ̈i

)
<τmax−∆τ, i=0, · · · , n (19)

where the joint torque τ is expressed by the motion equation
of the robotic arm, which is

τ
(
θi,θ̇i,θ̈i

)
= JR(θi)θ̈i + h(θi, θ̇i) (20)

where JR is the inertia matrix and h represents the gravity,
friction force and reaction force from the object.

C. Objective Function

Since the throwing manipulation is generally dynamic and
fast and needs larger joint driving torques, it is easy for
the object to roll on the surface of the arm or to break
contacts with the arm during the manipulation by violating
the dynamic grasp constraints. We are greatly concerned with
making the throwing manipulation more robust and stable to
disturbances and trajectory errors, etc.

In order that the constraints on the dynamic grasping and
the arm’s motion can be satisfied with sufficient tolerance,
we maximize the margin variables

d =
[
∆N ∆MA ∆MB ∆θ ∆θ̇ ∆τ

]T ∈ �6 (21)

in the optimization problem shown below.

D. Optimization Programming Problem

For a given object’s goal state zd, we find an optimal arm
trajectory by solving the following optimization problem.

max :
1
2
dT Wd (22)

subj. to: zd = g(u) (23)
c ≤ 0 (24)

θ̇0 = 0 (25)

find: θ̂ and ∆t

Eq. (22) is the objective function to maximize the margin
variables, where W is a weight matrix. The free-flight
model is used as the equality constraint (23). The inequality
constraints shown in Section. IV-B are combined as shown
in (24). As boundary conditions, the initial angular velocity
is specified by (25). In contrast, the initial angle and the
final angle and velocity are derived from this optimization.
We use sequential quadratic programming (SQP) to solve
the nonlinear programming. Once we find the arm trajectory
parameters (θ̂, ∆t), we can calculate the joint trajectory
using (12).
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Fig. 3. Throwing manipulation found by the optimization.
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Fig. 4. Arm trajectories found by the optimization.

E. Simulation Results

Consider a throwing manipulation of a rectangular object
to a goal. The parameter values of the object and robotic arm
are described in Section VI. The optimization programming
problem is formulated with n = 10. Since a local optimum
found by SQP depends on the initial guess, SQP is solved
with many different initial guesses given at random.

Fig. 3 shows the simulation result found by the opti-
mization which represents the motions of the object and
robotic arm. The object is thrown to the goal (x, y, φ) =
(0 m, 0.4 m, 150 deg) with the velocity ẏ = 0. We assume
that the object lands at the storage pallet located at the goal
without slipping and rebounding to simplify the analysis.

Fig. 4 shows the corresponding arm trajectories, which
have the initial state (θ0, θ̇0) = (−0.596 rad, 0 rad/s) and
final state (θt, θ̇t) = (0.346 rad, 9.28 rad/s) at a release time
tt =0.199 s, respectively. The arm is maximally decelerated
at the release time to set the object free instantaneously.
After the release time, the robot arm is moved with the joint
acceleration at the release time until the arm stops, which is
not described in Fig. 4.

Fig. 5 shows the arm trajectories obtained for different
initial guesses. The arm trajectory in Fig. 4, which has the
maximum value of the objective function, is chosen among
them.

V. LEARNING CONTROL

If we have an exact throwing model, then we can obtain
an optimal arm trajectory to throw an object to the goal
by using the motion planning method discussed in the
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Fig. 5. Arm trajectories found for different initial guesses, where ∆tmax =
100 msec.

previous section. To model the throwing manipulation system
accurately, we are required not only to implement parameter
identification whenever the change of the object, but also to
consider the dynamics of the interaction between the robot
and the object, as well as the correction of the vision sensor
etc. In general, it is impossible to obtain exact models.

In the present paper, instead of raising accuracy of an
approximate model itself, we overcome the problems of the
model with errors by applying an iterative learning control
method to the throwing manipulation.

A. Introduction of Virtual Goal

To find an optimal arm trajectory, instead of setting an
object’s goal state zd for the optimization programming
problem, we introduce a virtual goal state ẑd, which is
updated at each throwing trial in order that the robotic arm
can throw the object to the goal state zd as closely as
possible. The basic idea of the learning control using the
virtual goal is shown in [2].

The virtual goal is obtained as follows. The error between
the goal state zd and the actual state z is given by

ej = zd − zj (26)

where j denotes the trial number.
According to the value of the error, the virtual goal ẑj+1

d

of the j+1th throwing is updated as

ẑj+1
d = ẑj

d + Kei (27)

where the diagonal matrix K is gain parameters.
Replacing the goal state zd in the left-hand side of (23)

with the virtual goal state ẑd, we find an optimal arm tra-
jectory by solving iteratively the optimization programming
problem (22)-(25) at each throwing trial.

B. Learning Control Algorithm

The algorithm of the learning control is shown below.
1) The optimization programming problem is solved to

obtain the arm trajectory for the first throwing (j = 1).
In the same manner described in step 5 and 6, we make
the robotic arm throw the object and measure the actual
object state z1 with a camera.

2) We calculate the error ej of the j th throwing by using
(26). If the error norm is greater than the value of the
threshold, we move to the next step. Otherwise we



assume that the arm succeeds in throwing the object
to the goal, and the learning control is terminated.

3) The virtual goal ẑj+1
d is updated by using (27).

4) The optimization programming problem is solved to
obtain the arm trajectory for the j+1 th throwing.

5) To throw the object, the robotic arm is controlled
with a PD-compensator so that the arm can track the
trajectory obtained in step 4.

6) We measure several positions and orientations of the
flying object with the camera and estimate the object’s
ballistic trajectory through the least square approxima-
tions. We obtain the actual object state zj+1 from the
estimated trajectory and return to step 2.

VI. EXPERIMENT

A. Throwing Robot System

We have developed the throwing robot system which can
perform the throwing in the vertical plane as shown in
Fig.6. The aluminum arm is centrally-mounted and 62 cm
long and 15 cm wide plate. The arm is controlled with PD
compensators and is driven by the AC motor with a harmonic
drive gear, which has the maximum torque τmax =18 Nm and
the maximum speed θ̇max = 4π rad/s. The throwing radius
can be changed by adjusting the position of a thin plate on
the arm surface. The object on the plate is constrained with
2 mm high stoppers so as not to slide on the arm surface.

We use a rectangular parallelepiped wooden block as the
object whose mass and size are 29 g and 6 cm×3 cm×3 cm,
respectively. The moment of inertia of the wooden block is
estimated on the assumption that the block is homogenous
and symmetrical. We measure the positions of markers put
on the object during the flight with a camera at a rate of
1 kHz to estimate the object trajectory. The concave storage
pallet of wood is fixed at a goal in the vertical plane.

B. Experimental Results

The goal state zd is set to (0 m, 0.4 m, 150 deg, 0 m/s).
Fig. 7 shows the transitions of the error norms of the position,
orientation and vertical velocity at the goal. The value of the
error norm is reduced gradually by repeating the learning.
The error norm of the 10th throwing is less than 2.5 mm, 0.1
deg and 0.01 m/s, respectively. These experimental results
show that the proposed method enables the robotic arm to
throw the object to the goal accurately. Fig.8 shows the
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Fig. 6. Throwing robot system
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transitions of arm trajectories found by the optimization at
each iteration. The trajectories are modified by repeating the
learning. Fig. 9 shows snapshots of the successful throwing
motion.

In this experiment, it is crucial for the stable and robust
throwing to keep the un-rolling constraint about the vertex A
of the object. In order that the un-rolling constraint (5) can
hold and the object will not start rolling on the arm surface,
we find the robotic arm trajectory so that the margin ∆MA

become sufficiently large in the optimization problem.

C. Application to Sorting/Assembly Tasks (Attached Video)

The first video shows the trial throwing motion in the
iterative learning mentioned above. By repeating the throw-
ing, the robotic arm succeeds in throwing the object into the
storage pallet with the zero vertical velocity, which is located
on the apex point of the object’s ballistic trajectory.

The second video shows the sorting task in which the
robotic arm throws three objects into storage pallets with
an appropriate orientation, as shown in Fig. 10. In the first
throwing (Fig. 10(a)), the zero vertical velocity is set at the
first goal. On the other hand, in the second throwing (Fig.
10(b)) we set the negative vertical velocity at the second goal.
The object reaches the pallet with descending after passing
through the apex point of the ballistic trajectory. In the third



Fig. 9. Snapshots of the throwing of the rectangular object into the pallet

throwing (Fig. 10(c)), the robotic arm can throw the object
to the third goal avoiding the first and second pallets by
adjusting the negative vertical velocity at the goal. If the
negative vertical velocity with a larger (smaller) magnitude
should be set, the object will collide with the upper (lower)
pallet.

The third video shows the parts assembly task with H-
and T-shaped parts as shown in Fig. 11. First, the robotic
arm throws the H-shaped part and slots it onto the T-shaped
part fixed upside down (Fig. 11(a)). Next, the robotic arm
throws the other T-shaped part and inserts it into the former
H-shaped part (Fig. 11(b)). In order to prevent the flying part
from colliding with the previously-inserted parts from the
side, the vertical velocity at the goal is set so that the linear
velocity at the goal may put toward the vertical direction as
much as possible.

These videos show the throwing manipulation controlled
by the proposed learning algorithm can achieve the high
positioning performance.

VII. CONCLUSION

This paper proposed the learning control method for
the throwing manipulation which can control not only the
position but also the orientation of the polygonal object
more accurately and robustly to uncertainties. We showed
experimentally the validity of the proposed control method
with the one-degree-freedom robotic arm. We demonstrated
the usefulness of the throwing manipulation by applying it
to sorting task and assembly task on experiments.

In future, we will consider the design of storage pallets or
catching devices which can surely hold the object without
rebounding and slipping at landing. Integrating throwing
devices and catching devices will help to construct robust
flexible manufacturing systems (FMS).
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