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Abstract  We have developed a self-reconfigurable robot 
which can form a 5R closed kinematic chain, only two of 
whose joints are actuated. This paper discusses its dynamic 
rolling. When it rolls, it has one DOF of its absolute 
orientation besides two DOFs of its shape. We show that the 
absolute orientation is subject to an acceleration constraint, 
not a velocity constraint. Therefore, the dynamics of the 
rolling motion needs to be formulated to control it. This 
paper proposes a controller which can reduce its negative 
acceleration caused by gravity. The shape and orientation of 
the robot cannot be controlled simultaneously. This paper 
proposes a control strategy switching shape and orientation 
controllers. We verify the effectiveness of the control 
strategy by simulations and experiments. 

1  Introduction 
The purpose of this study is to develop a simple but 

useful robot. Such a robot is less expensive and more 
reliable than complex robots. A group of such robots 
could do more than a single complex robot.  

As an example, we have developed a self- 
reconfigurable robot which can form 5R and 4R closed 
kinematic chains as shown in Fig. 1 by coupling the same 
two 2R open kinematic chains whose first joints are 
unactuated [1]. Fig. 2 shows a photo of the robot forming 
the 5R closed kinematic chain. We have proposed 
coupling of limbs with a passive joint(s) to form a parallel 
robot with the same number of actuators as its degrees of 
freedom (DOFs). Both the 5R and 4R closed kinematic 
chains can be used as a parallel robot with the same 
number of actuators as its DOFs. Our previous 
experiments reveal that the 5R closed kinematic chain can 
locomote by rolling as shown in Fig. 1 (B’) [2]  

Rolling motions of closed kinematic chains have been 
studied. Matsuo et al [4] studied learning of the rolling 
motion of a 6R closed kinematic chain using Genetic 
Algorithm. Yim et al [5] has developed a reconfigurable 
robot, which can form a closed kinematic chain. All joints 
of these robots are actuated. Lee and Sanderson[6] have 
developed the “Tetrobot” and studied its dynamic rolling 
motion.  

In general a rolling motion is considered as the 
sequence of phases as shown in Fig. 3. In (A) a robot 
gains an initial velocity for rolling. In (B) through (D) it 

rolls about a point on the floor and in (E) it lands on the 
floor. It bounds on the floor in general as shown in (F), 
which can trigger the next step of rolling by saving some 
energy. Lee and Sanderson studied dynamic control to tip 
the Tetrobot for transition from (A) to (B) and to restore 
its shape in the phase of rolling about a point, (B) through 
(D). They also simulate the impact in the phase (E). 

In this paper, we discuss dynamic rolling control of our 
5R closed kinematic chain robot (5R closed robot or just 
robot for simplicity) in the phases of rolling about a point 
(B) through (D) and (F)) by focusing on its nonholonomic 
property. We show that the rolling velocity of the 5R 
closed robot can be accelerated/ decelerated even in these 
phases. Therefore the 5R closed robot can roll starting 
with a lower initial velocity. 

The 5R closed robot has one DOF of its absolute 
orientation besides two DOFs of its shape. The absolute 
orientation is independent of the constraint for forming 
the closed kinematic chain. If its unactuated joints were 
actuated, the closed kinematic chain would be 
over-actuated but the absolute orientation could not be 
driven directly. Section 2 derives dynamic equations of 
motion and shows that the absolute orientation is subject 
to a second-order nonholonomic constraint. Since it is not 
subject to a velocity constraint, the dynamics of the 
rolling motion needs to be formulated to control it. 

The shape and orientation of the robot cannot be 
controlled simultaneously. Section 3 proposes a control 
strategy switching shape and orientation controllers. 
Sections 4 and 5 show simulation and experimental results 
and the effectiveness of the proposed control strategy. 
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Figure 1: Self-reconfigurable robot by coupling 



 
Figure 2: Our self-reconfigurable robot forming a 5R 
closed kinematic chain 
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Figure 3: Phases of rolling motion 

2  Dynamics for rolling motion 
In the rolling motion, the orientation of this 5R closed 

kinematic chain can be classified into five cases as shown 
in Fig. 4 (A) to (E) according to the arrangement of 
actuators. If (E) is seen from the back of the sheet, the 
arrangement of actuators is seen as (E'), which is 
equivalent to (A). Therefore, their dynamic equations of 
motion are the same, while the rotation direction of (E) is 
opposite to that of (A). Similarly, (B) and (D) can be 
described as the same equations of motion. Therefore, we 
deal with only (A), (C) and (D). 
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Figure 4: Arrangements of the actuators 
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Figure 5: Common model of the rolling motion 

Fig. 5 shows a common model for (A), (C) and (D). 
Let link3 be the link whose one end is leaving the floor 
and φ  be its orientation angle from the floor. The joint 
angles 1  through 4θ θ  are defined as shown in the figure. 
Define generalized coordinates as . 
Corresponding to , the joint torque vector  is given 
by 

( )Tφθθθθ 4321=q
τq

case (A)             (1) ( )Tττ 000 41=τ
( )T=case (C)             (2) ττ 000 31τ
( )T=case (D)             (3) ττ 000 42τ

Let ( )  be the center of the gravity (COG) of the 
5R closed kinematic chain and 

GG yx ,
Gφ  be the angle between 

the floor and COG, which we call the "COG angle". 
When 90<Gφ [deg], the angular velocity of the COG  
is decelerated by gravity. If 

Gφ&

Gφ can reach 90>Gφ  [deg], 
 is accelerated by gravity. The aim of this control for 

rolling is that 
Gφ&

90>Gφ  [deg]. Therefore Gφ  is controlled 
actually instead of φ  in Section 3.  

This 5R closed kinematic chain is modeled as two open 
kinematic chains; one is the 2-link open kinematic chain 
'A', consisting of links 1 and 2, the other is the 3-link 
open kinematic chain 'B', consisting of links 3 through 5. 
They are coupled at their end-points with the unactuated 
coupling joint 5θ . The constraint for forming the closed 
kinematic chain can be written with respect to the local 
coordinate system  attached to link 3 as '' yx

34345322121 clcllclclx ++=+=′ ,     (4) 

34345322121 slsllslsly ++=+=′ ,     (5) 

where s  and stand for  and , and c sin cos
( )jijs θ+= sin iθ  etc. , and l  is the length of the i th 

link. We have the velocity constraint by taking the time 
derivative of Eqs. (4) and (5): 
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In Eq. (6), two variables from  through  can be 
selected as independent variables, since the number of the 
constraint equations is two. If its unactuated joints were 
actuated, the 5R closed kinematic chain would be 
over-actuated but 

1θ& 4θ&

φ  could not be driven directly, since 
φ  is independent of the constraint, Eq. (6). φ  is subject 
to an acceleration constraint as described later.  

Eq. (6) can be rewritten as 
2RΨ ∈= 0q&               (7) 

where . By using ( )0jjjj 2121 BBAAΨ = Ψ in Eq. (7), the 
dynamic equation of motion of the 5R can be obtained in 
terms of the generalized coordinates :  q

( ) ( ) fτqGqqCqq TΨM +=++ &&& ,)(    (8) 

where  is the inertia matrix,  is 
the term of centrifugal force, G  is the 
gravitational term and 

55)( ×∈RM q ( ) 5, R∈qqC &
5R∈( )q

( )yx ff=f  is the constraint force 
acting on the end-points of the open kinematic chains A 
and B.  

By examining the condition in the paper [6], we can 
prove that φ  is subject to a second-order nonholonomic 
constraint. We chose φ  and two joint angles from  to 

4  as three independent variables in . The remaining 
two variables are dependent. Let  be the matrix 
whose columns are the bases of the null space of 

1θ
θ q

5×R 3∈N
Ψ and 

 be the vector consisting of the three independent 
variables.  can be written as . Dot-multiplying 
both sides of Eq. (8) by , we obtain 

3R∈p&
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TN
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since . Eq. (9) can be rewritten as 330 ×∈= RΨN
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For instance, if  and  are chosen as independent 
variables, we have p and  
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where ‘*’ denotes a certain real number. The third element 
of τ~  is zero. So is it when other joint angles are chosen 
as independent variables. The third element of G~  is not 
constant. Therefore, the third equation is a second-order 
nonholonomic constraint [6]. Thus, φ  is not subject to a 

velocity constraint.    

3  Control design 
3.1  Equations of motion including  Gφ

We establish the dynamic equations of motion 
including Gφ . The COG of the system, , is given 
by 
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where  is the mass of the th link,  and  are 
the COG of the th link. 

im i ix iy
i Gφ  can be written as  

G

G
G x

y
=φtan .                (11) 

Taking the time derivative of Eq. (11), we obtain  

),()( qqqq &&&&& KL G −=− φ           (12) 

where  and . Taking the time 
derivative of Eq. (7), we obtain the constraints for ,  

51)( ×∈ RL q RK ∈),( qq &

q&&
2RΨΨ ∈=+ 0qq &&&&            (13) 

The dynamic equations of motion can be obtained from 
Eqs. (8), (12) and (13), 
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In Eq. (14), the number of the constraints is eight and the 
number of the variables is ten, which are  through , 

, ,  and . We can control two of them.  
1θ&& 4θ&&

φ&& Gφ&& f τ

3.2  COG control mode 
The COG control mode can control G  and the 

acceleration of one of the joints. Consider the case of Fig. 
4 (A), for instance, and compute the joint torques 

φ&&

1τ  and 
4τ . In Eq. (14), we express the matrix of the left-hand 

side as 
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where  is the i th column vector of the matrix in the 
left-hand side. If we control , Eq. (14) can be rewritten 
as 
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3.3  Shape control mode 
The shape control mode controls two of  through 
. If we chose  and , we can rewrite Eq. (14) by 

using ,  

1θ&&

4θ&& 1θ&& 4θ&&

iwTo obtain the joint torques, we rewrite Eq. (15) as follows 

GGM Ĉˆ 1
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We can also rewrite Eq. (17) as 

( ) SS
T

xx Mττff Ĉˆ 1
41431

−=−−φθθθ &&&&&&&&    (20) and we also assume that  is non-singular. Section 4.3 
discusses singularities of . , , ,  and  
are dependently determined by Eq. (16). Therefore the 
COG control mode cannot control the shape of the 5R 
closed kinematic chain which is determined by two of 

4θ&& φ&& f

1θ  
through 4θ . 

where  
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and it is assumed that  is non-singular. Section 4.3 
discusses the singularities of . The joint torques,  
and , can be given by Eq. (20). Note that the shape 
control mode cannot control  which is dependently 
obtained from Eq. (20). 

SM̂
SM̂

Gφ&&

1τ
4τ

We discuss how to give a desired acceleration of 
for rolling. If Gφ&&  is not controlled and the shape of 

the 5R closed robot is constant,  is decelerated by 
gravity and Gφ  may not exceed 90 [deg]. Let the 
deceleration (negative acceleration) be . The 
COG control mode reduces the deceleration by setting the 
desired acceleration  

)0(<gravφ&&
 A PD controller is applied to control two joint angles.  

( ) idiripi KK θθθθ &&& −−=           (21) 
0.1<κ      (17) 

where riθ  is a desired angle, and K  and  are 
feedback gains.  

p dK
Note: If 1>κ  the COG mode decelerates  more than 
gravity alone. This is useful for the robot to descend a 
slope or to stop suddenly when it rolls about a point. If 

Gφ&

0<κ , the COG mode absolutely accelerates  under 
gravity. However there is a tradeoff between reducing 

Gφ&

κ and maintaining an initial shape of the robot as 
discussed next. 

3.4 Condition for switching control 
modes 

The condition for switching the two control modes is as 
follows. When 90≤Gφ  [deg], we apply the COG control 
mode to achieve 90>Gφ  [deg]. Once 90>Gφ  [deg] is 
achieved, the shape control mode is applied. Until the 
robot lands on the floor, the shape can be controlled. It is 
our future work to obtain the optimal landing shape to 
stop or continue rolling. After switching to the shape 
control mode, Gφ  may be less than 90 [deg] again 
because it is not controlled in the shape control mode. A 
solution is to delay the timing of switching the control 
modes.  

  can be obtained as follows. If the shape is constant, 
the 5R closed robot can be regarded as a rigid-body. From 
the moment equilibrium condition, we have 

gravφ&&

{ GG xI g0+  

)2
Gy

       (18) 

where  is the moment of inertia of the whole 5R 
closed robot, is its mass and  

GI
m g  is the gravity 

acceleration.  
4  Simulations 
4.1 Physical parameters and initial 
conditions 

 The smaller κ  is, the smaller the deceleration becomes, 
however if it is too small, the shape changes significantly. 
On the other hand, the bigger  is, the more likely Gφ  
do not exceed 90 [deg]. In Section 4, we select an 
appropriate value of  by simulation.  

Table 1 shows the length of the th link, , the mass, 
, the length to the center of gravity, , and the inertia 

moment, . The initial conditions are 

i il

1

im cil
iI 288=θ [deg], 

1082 =θ [deg], 723 =θ [deg], 724 =θ [deg], 20=φ [deg], 
 through  are 0 [deg/s], and [deg/s]. 

Suppose that  and 
1θ& 4

1θ
θ& 68φ& =G=φ&

4θ are actuated joints as shown in 
Fig. 4 (A). The COG control mode controls  and  G

&φ& 2θ&&

 In the COG control mode, one of the joint angles can 
be controlled. The 5R closed robot can avoid singularities 
by controlling it as we discuss in Section 4.3. 



whose desired acceleration is 0 [deg/s2]. Changing κ  as 
1.0, 0.8 and 0.1, we observe Gφ  and the shape of the 5R 
closed kinematic chain. The shape control mode control 

 and  whose desired angles are 1θ&& 4θ&& 2881 =θ [deg] and 
72=4θ [deg].  
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Table 1 Physical parameters of each link 

 0.25 m 1m  1.01 kg 1cl  0.125 m  7.8 10-3 kg m2

 0.25 m 2m  1.37 kg 2cl  0.175 m  9.7× 10-3 kg m2

3l  0.25 m 3m  0.94 kg 3cl  0.125 m  1.8× 10-2 kg m2

4l  0.25 m 4m  1.37 kg 4cl  0.175 m  9.7× 10-3 kg m2

5l  0.25 m 5m  0.97 kg 5cl  0.097 m  1.7× 10-2 kg m2

Figure 6: Angles of COG of the 5R closed kinematic 
chain 

4.2  Simulation results 
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 Figs. 6 and 7 show simulation results of  and the 
configurations of the 5R closed robot, respectively. The 
configurations after that pointed by “a” are controlled by 
the shape control mode. When =κ  in Fig. 6, Gφ  
cannot reach 90 [deg] and return toward zero by gravity. 
When 8.0  and 1.0=κ ,  can reach 90 [deg] and 
is accelerated by gravity after 90> . In this simulation, 
the closer to one κ  is, the smaller the change in the 
shape is. For other arrangements of actuators in Fig. 4 (C) 
and (D), the same results are obtained, since their torques 
are calculated to obtain the same desired . 

4.3  Singularity 
We examine singular configurations at which  and 

 become singular in the workspace. These matrices 
are functions of three independent variables, 

M̂
SM̂

 and two 
variables from  through 1θ , however it turns out that 
φ  is independent of the singular configurations in this 
example. When 2θ  and  are chosen as the 
independent variables, Fig. 8 shows the singular 
configurations. In the area (c), the 5R closed robot cannot 
actually form the closed shape geometrically. The 
condition number of  is more than 200 in the areas 
(a) and (b), that of  is more than 200 in the area (b). 
We define these areas as singular configurations, since the 
observed torques in these areas exceed the maximum 
limits of our actuators.              

GM̂
SM̂

Figure 7: Simulation results 
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 The dashed-dotted line is the simulation result when 
1.0=κ  corresponding to Fig. 7 (B). The COG control 

mode is switched to the shape control mode at the point 
indicated as “× ”. The robot avoids the singular area (a), 
although it is not intended. 
  Using Fig.8, the robot can intendedly avoid singular 
configurations even in the COG control mode. When 2θ  
is increased by the PD controller, the trajectory of 
configurations indicated by the dashed line is farther from 
the singular area (a) than that by the dashed-dotted line. 

Figure 8: Singularities in the workspace of the 
simulation 



5  Experiments 

t = 0 [s]t = 0.1

t = 1.0 t = 0.14  

We conduct two experiments using the real robot in Fig. 2. 
The physical parameters of the robot have been shown in 
Table 1. In the first experiment, the switching control 
strategy proposed in Section 3.2 is applied with 8.0=κ . 
In the second experiment, only the shape control mode is 
used to maintain the initial shape of the robot. The two 
experiments are also conducted on a slope of 5 [deg].  

The initial shape is 2881 =θ [deg], 1082 =θ [deg], 
723 =θ [deg] and 724 =θ [deg].  through 1θ 4θ  and  

through  are measured by encoders, 
1θ&

4θ& φ  and  by a 
gyro sensor attached on link 3. 

φ&

Gφ  and  are 
respectively obtained by Eq. (11) and taking the time 
derivative of Eq. (11).  

Gφ&
Figure 10: Snapshots of the rolling motion 

6  Conclusion 
For the dynamic rolling motion of the 5R closed 

kinematic chain robot, this paper has focused on its 
nonholonomic property and proposed a control strategy 
switching the two control modes: the COG control mode 
and the shape control mode. The COG control mode can 
reduce the negative acceleration caused by gravity which 
acts on the robot when it rolls about a point on the floor. 

 Table 2 shows initial velocities of Gφ  in these 
experiments. Fig. 9 shows the experimental results of Gφ . 
(A) shows that the robot can achieve 90>Gφ  by the 
switching control strategy (snapshots are shown in Fig. 
10), but cannot when only the shape control mode is 
applied. The same results are obtained on the slope as 
shown in (B). This robot we developed is self-reconfigurable. Since it 

can locomote by rolling when its shape is the 5R closed 
kinematic chain, it is useful if it can perform manipulative 
tasks after locomotion. The 5R closed kinematic chain 
can be used as a parallel manipulator and the 4R closed 
kinematic chain as shown in Fig. 1 may also be useful to 
perform some tasks. It is our future work to conduct 
experiments of manipulation.   
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