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Abstract 

In this paper we address the issue realizing efficient and equitable utilization of limited resources by 
collective decision of interacting heterogeneous agents. There is no presumption that collective action of 
interacting agents leads to collectively satisfactory results without any central authority. How well agents do 
for it in adapting to their environment is not the same thing as how satisfactory an environment they 
collectively create. Agents normally react to others’ decisions, and the resulting volatile collective decision is 
often far from being efficient. By means of experiments, we show that the overall performance crucially of the 
system on the types of interaction as well as the heterogeneity of preferences. We also show that the most 
crucial factor that considerably improves the performance is the way of information presentation to agents. It 
is shown that if each agent adapts to global information the performances are poor. The optimal guidance 
strategy to improve both efficiency and equity depends on the way of interaction. With symmetric interaction, 
the local information of the same type realizes the highest performance. With asymmetric interaction, 
however, the local information of the opposite preference type realizes the highest performance. 
 
Keywords: interaction, heterogeneity, diversity, local adaptation, global adaptation, efficiency, 
equity 
 
1. Introduction 
The question of how it is possible for a group of independent individuals achieve both their own 
goals and a common goal has been addressed in many fields. By a common goal we mean a 
goal achievable by a group to require cooperation. The key element that distinguishes a 
common goal from an individual goal is that it requires collective action. Collective action, 
however, poses difficult problems, and it requires cooperation to overcome them. Coordination 
is different concept from cooperation, which does not assume the existence of the common goal 
shared by members. Coordination is necessary to achieve individuals’ independent goals 
efficiently. The design of efficient collective action from bottom up becomes to a crucial issue 
in many disciplines [1][2]. It also an interesting problem is under what circumstances will a 
collection of interacting agents could realize efficient coordination from bottom up [11][12]. 

There are strong interests in many disciplines to answer the following questions: how do 
agents with heterogeneous micro-motives generate self-organized global macroscopic orders or 
regularities. However, there has been no natural methodology for systematically studying the 
dynamics of highly interacting heterogeneous agents. Some models treat adaptive processes 
with the assumption of the homogeneous payoff. Interdependent situations, in which an agent's 
decision depends on the decisions of other agents, are the ones that usually don't permit any 
simple summation or extrapolation to the aggregate. To make that connection we usually have 
to look at the system of collective interaction among individuals, which is also treated as the 
relation between individuals and the collectivity.  

Collective means any pair of a complex system of autonomous components, together with a 
performance criterion by which we rank the behavior of the overall system. Wolpert and Tumer 
propose that the fundamental issue is to focus on improving our formal understanding of two 
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closely related issues concerning collective [25][26]: 
(1) The forward problem of how the fine-grained structure of the system underlying a collective 
determines its complex emergent behavior and therefore its performance. 
(2) The inverse problem of how to design the structure of the system underlying a collective to 
induce optimal performance.  

In examining collective, we shall draw heavily on the individual decisions. Indeed, an 
organization or society does not make decisions, individual do. It might be argued that 
understanding how individual make decisions is sufficient to understand and improve collective 
action. Much literature on collective has reacted against the older notion that irrationality is the 
key to explanation. They agree that collective often result from rational and calculated action. In 
this paper, we take a different view. Although individual decision is nested within important to 
understand, it is not sufficient to describe how a collection of agents arrives at specific decisions. 
These situations, in which an agent decision depends on the decisions of the others, are the ones 
that usually do not permit any simple summation or extrapolation to the aggregates. To make 
that connection we usually have to look at the system of interactions between agents and the 
collectivity. Sometimes the analysis of the collective is difficult, and it is inconclusive 
[2][17][18][24]. But even an inconclusive analysis warned against jumping to conclusions about 
the behavior of aggregates from what one knows or can guess about agent interests or 
motivations, or jumping to conclusions about agent intentions from the observations of 
aggregates.  

We are also interested in how the society gropes for its way towards equilibrium in an 
imperfect world of locally interacting agents. There is no presumption that the self-interested 
behavior of agents should usually lead to collectively satisfactory results [9][14][20][21]. How 
well each agent does for it in adapting to its social environment is not the same thing as how 
satisfactory a social environment they collectively create for themselves. While all agents 
understand the outcome is inefficient, acting independently is powerless to manage this 
collective about what to do and also how to decide. The question of whether interacting 
heterogeneous agents self-organize efficient macroscopic orders from bottom up depends on how 
they interact each other. We attempt to probe deeper understanding this issue by specifying how 
they adapt each other. We consider two types of interaction, symmetric and asymmetric 
interaction. With symmetric interaction an agent receives a payoff if he chooses the same action 
as the majority does. With asymmetric interaction an agent receives a payoff if he chooses the 
same action as the minority does. Agents myopically adapt their behavior based on their 
idiosyncratic rule to others’ behaviors. We analyze adaptive dynamics that relate the collective 
with the underlying individual adaptive behaviors. There are many parameters to be considered, 
among them, we examine the heterogeneity of utility and the configuration of locating agents. 
We evaluate emergent collective from the criteria of efficiency and equity. We show that 
interacting agents outperform when they adapt to local information rather than to global 
information. 
 
2. Formalism of the Model 
2.1 Collectiveystems with micro-macro loop 
If the system consists of many interacting components, which we call agents, the system 
performance should be described on two different levels: the microscopic level, where the 
decisions of the individual agents occur and the macroscopic level where collective decision can 
be observed. To understand the role of a link between these two levels remains one of the 



challenges of complex system theory. Among many factors that may influence the performance 
of the overall system we focus on the information about the decisions of others available to each 
agent. The greatest promise lies in analysis of situations where agents behave in ways contingent 
on one another, and these situations are central in theoretical analysis of linking micro to macro 
levels of collective decision. We aim at discovering fundamental local or micro mechanisms that 
are sufficient to generate the macroscopic order of efficiency. This type of self-organization is 
often referred as collective orders emerged from the bottom up [3]. 
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Fig.1: The systems of collective as micro-macro loop 

 
2.2 Examples of collective with interacting agents  
We address specific problems of collective with interacting agents. Social interactions pose 
many coordination problems to individuals. There are many situations where interacting agents 
can benefit from coordinating their action. Agents face problems of sharing and distributing 
limited resources in an efficient way.  
 
(1) Network formation by heterogeneous agents 
We consider a collection of agents G A i Ni= ≤ ≤{ : }1 in which each agent faces the binary decision 
problem. Agents periodically have to make decision to add the network or sever from it. 
Agents try to establish links in order to achieve higher payoffs. If the more agents join the 
network, the higher the payoff they receive, and this property is referred to as network 
externality [5][6]. Perhaps an essential point to put forward is that networks induce a special 
interdependency and a specific heterogeneity, which can affect network structure and aggregate 
phenomena in ways that are out of reach without them. To capture the intuition of this, it is 
enough to accept an agent's rational decision, depends on the agents it is directly linked with. 
This interdependence with heterogeneity in decision may in turn influence the evolution of the 
networks. Here, each agent Ai ∈ G  has the following two strategies: 

 S1: Joins to the network,  S2: Does not join the network          (2.1) 

The number of agents to choose S1 (trade) is denoted by n (0 ≤ n ≤ N ). Agent Ai  acquires a 
benefit of ai(n / N ), a fixed value ai  multiplied by the proportion of agents who join the 
network. If agent Ai  adds to the network, a cost ci  is incurred. An agent can get a benefit as a 
spillover effect by bi(n / N ) (ai ≥ bi), even if she does not add to the networks. The payoff of 
agent Ai  when she chooses S1 or S2 is given as follows: 

Ui(S1) = ai(n / N) − ci,    Ui(S2 ) = bi(n /N )               (2.2) 

The utility of agent Ai  to choose S1 or S2 is illustrated as the function of (n/N) in Fig.2. The 
utility of each agent is an increasing function of the population of agents in the network n/N. 
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Fig.2: The utility of agent Ai  under   Fig.3: The utility of agent Ai  under  
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(2) Route selection by heterogeneous agents 
There is another type of interaction in which we have to utilize different methodology. We 
consider a competitive routing problem of networks, in which the paths from sources to 
destination have to be established by independent agents. For example, in the context of traffic 
networks, agents have to determine their route independently. In telecommunication networks, 
they have to decide on what fraction of their traffic to send on each link of the network. 
Consider two parallel routes A and B, and each agent has to choose independently one of the 
two routes. As shown in Fig.3, each agent has the following two strategies: 

 S1: Chooses the route A,  S2: Chooses the route B           (2.3) 

The utility of each agent is determined what the majority does, and each agent gains utility only 
if she chooses the opposite route of the majority does. The utility function of agent Ai  if she 
chooses S1 or S2 is given as follows: 

 U S a n Ni i( ) ( / )1 1= − ,   U S b n Ni i( ) ( / )2 =              (2.4) 

The payoff of agent Ai  if he chooses S1 is a linearly decreasing function of the proportion of 
the same decision. On the other hand, the payoff if he chooses S2 is a linearly increasing 
function of the proportion of agents with the opposite decision. The utility of agent Ai  when she 
chooses S1 or S2 is illustrated s as the function of (n/N) in Fig.4. 
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Fig.4 A competitive route selection 

 
Large-scale interactions with N-persons can be decomposed into the problem of the 

interaction between an individual and the aggregate. In the network formation problem in the 
previous section, we define the payoff matrix of each agent as given in Table 1. 
 



Table 1 The payoff matrix of agent Ai   Table 2 The payoff matrix of agent Ai  ( 0 1≤ ≤θ i ) 
Choice of other 

Agents 
Choice of agent Ai  

S1  S2  
 Choice of other 

Agents 
Choice of agent Ai  

S1  S2  

S1  a ci i−  −ci   S1  1−θ i  0  
S2  bi  0   S2  0  θ i  

The expected payoff of agent Ai  if she chooses S1 or S2 is given as follows: 

 U S a c n N c n N a n N ci i i i i i( ) ( )( / ) ( / ) ( / )1 1= − − − = − ,  U S b n Ni i( ) ( / )2 =   (2.5) 

Therefore, we have the same utility function with (2.2). Since matrix of the two-person game is 
invariant for the affine transformation [27], the payoff matrix of Table 1 can be equivalently 
transformed into the matrix of Table 2, where θ i i i ic a b= −/ ( ) . 

Similarly the payoff matrix of agent Ai  in the route selection problem can be given as in 
Table 3. The matrix of Table 3 can be also equivalently transformed into the matrix of Table 4, 
where θ i i i ib a b= +/ ( ) . 

 
Table 3 The payoff matrix of agent Ai   Table 4 The payoff matrix of agent Ai  ( 0 1≤ ≤θ i ) 

Choice of other 
Agents 

Choice of agent Ai  
S1  S2  

 Choice of other 
Agents 

Choice of agent Ai  
S1  S2  

S1  0  ai   S1  0  θ i  
S2  bi  0   S2  1−θ i  0  

 
They have to coordinate their decisions with others in order to improve their utility. We 

distinguish the two types of the above interaction as symmetric and asymmetric interaction 
[18][19]. Interaction usually implies that increased effort by some agents leads the remaining 
agents to follow suit, which gives multiplier effects [16]. We call this type of interaction as 
symmetric interaction. On the other hand, in the route selection problem, agents receive payoff 
if they select the opposite strategy as the majority does. This type of interaction is distinguished 
as asymmetric interaction. This type interaction is also referred as minority games in which 
agents receive payoff if he selects the same strategy as the minority does [1][19][23]. For 
realizing efficient and equitable distributions of limited resources, agents normally react to 
aggregate of others’ decisions. The resulting volatile collective decision is often far from being 
efficient. The overall performance depends crucially on the type of interaction as well as the 
heterogeneity of agent preferences. 
 
3. Global Adaptation vs. Local Adaptation 
In examining collective decisions, we shall draw heavily on the individual adaptive decisions. 
Within the scope of our model, we treat models in which agents make deliberate decisions by 
applying rational procedures, which also guide their reasoning. In order to describe the 
adaptation process at the individual level, we may have two fundamental models, global 
adaptation and local adaptation. It is important to consider with whom an agent interacts and 
how each agent decides his action depending on others’ actions. Agents may adapt based on the 
aggregate information representing the current status of the whole system (global adaptation) as 
shown in Fig.5 (a). In this case, each agent chooses an optimal decision based on aggregate 
information about how all other agents behaved in the past. An agent calculates her reward and 



plays her best response strategy. An important assumption of global adaptation is that they 
receive knowledge of the aggregate.  

In many situations, agents are not assumed to be knowledgeable as to correctly guess or 
anticipate other agents’ actions, or they are less sophisticated and that they do not know how to 
calculate best replies [11]. With local adaptation each agent is modeled to adapt to her neighbors 
[10][14]. The hypothesis of local adaptation also reflects limited ability of agents’ parts to 
receive, decide, and act based upon information they receive in the course of interaction. As a 
specific model, we consider the lattice structure as shown in Fig.5 (b), in which each agent 
interacts with his neighbors. The main point is that an agent's decision depends on what it knows 
about others. At each period of time, each agent decides whether to add or sever the network 
given the knowledge. An agent thinks strategically, knowing that everyone else is also making a 
rational decision given global or local information. 

Aggregate Information

      

Agent Ai

 
 (a) Global adaptation                (b) Local adaptation 

Fig.5: Two basic adaptation models of agents 
 

[Global adaptation and symmetric interaction]  
We obtain the adaptive rule of each agent as her best response. Let’s denote the proportion of 
agents having chosen S1  at time t  in a population by p t( ) . Agent Ai  of the payoff 
parameter θ i  in Table 2 calculates her expected utilities as follows: 

U S p ti i( ) ( )( )1 1= −θ ,  U S p ti i( ) ( ( ))2 1= − θ              (3.1) 

By comparing the expected utilities under S1  and S2 , the optimal adaptive rule of agent Ai  
is obtained as the function of the aggregate information on collective p t( )  and her 
idiosyncratic payoff θ i  (defined as threshold) as follows: 

(i) If  p t i( ) ≥ θ , choose S1  
(ii) If  p t i( ) < θ , choose S2                   (3.2) 

 
[Local adaptation and symmetric interaction]  
The local adaptive rule is obtained as follows. Let’s denote the proportion of the neighbors of 
agent Ai  having chosen S1  at time t  by p ti ( ) . The optimal adaptive rule with local 
adaptation is obtained as follows: 

(i) If  p ti i( ) ≥ θ , choose S1  
(ii) If  p ti i( ) < θ , choose S2                   (3.3) 

 
[Global adaptation and asymmetric interaction] 
We obtain the adaptive rules of agents with asymmetric interaction. Let’s denote the proportion 
of agents having chosen S1  at time t  in a population by p t( ) . Agent Ai  of the payoff 
parameter θ i  in Table 3 calculates her expected utilities as follows: 



U S p ti i( ) ( ( ))1 1= − θ ,  U S p ti i( ) ( )( )2 1= −θ              (3.4) 

By comparing the expected utilities under S1  and S2 , the optimal adaptive rule of agent Ai  
is obtained as the function of the aggregate information on collective p t( )  and her 
idiosyncratic threshold θ i  as follows: 

(i) If  p t i( ) ≤ θ , choose S1  
(ii) If  p t i( ) > θ , choose S2                   (3.5) 

 
[Local adaptation and asymmetric interaction] 
The adaptive rule with local adaptation is obtained as follows: Let’s denote the proportion of 
the neighbors of agent Ai  who have chosen S1  at time t  by p ti ( ) . The optimal adaptive 
rule with local adaptation is obtained as follows: 

(i) If  p ti i( ) ≤ θ , choose S1  
(ii) If  p ti i( ) > θ , choose S2                   (3.6) 

 
4. Heterogeneity in Preferences and Representation of Diversity 
The crucial concept for describing heterogeneity of agents is their preference characterized by 
their threshold θ i . Threshold models choose the elements of collective which game theory 
handles only with difficulty and makes them central: substantial heterogeneity of preferences 
and inter dependence of decisions over time. This is possible because that the payoff matrix is 
replaced by a one-dimensional vector of threshold one for each agent, which allows enormous 
simplification in the ensuring analysis. 

In this section, we consider several collections of heterogeneous agents. We also characterize 
the diversity of heterogeneous agents from both threshold distribution and the configuration of 
their location. Each agent has an idiosyncratic threshold θ i , and the diversity of heterogeneous 
agents is represented by the distribution of θ . We classify heterogeneous agents into the 
following two types: 

(1) Type 1: Agent with the threshold θ i ≤ 0 5. . (Such an agent prefers the strategy S1  to S2 .) 
(2) Type 2: Agent with the threshold θ i > 0 5. . (Such an agent prefers the strategy S2  to S1 .)  
We also classify interaction types as follows: 

(1) Random neighbor: Each agent interacts with neighbors of any type. 
(2) Homogeneous neighbor: Each agent interacts with neighbors of the same type. 
(3) Heterogeneous neighbor: Each agent interacts with neighbors of the opposite type. 

We assume the proportions of agents of Type 1 and Type 2 in a collection of agents 
G A i Ni= ≤ ≤{ : }1 are the same. We denote the number of agents with the same threshold θ  
in G  by n( )θ . We define the density of θ  by f ( )θ , which is obtained by divided n( )θ  
by the total number of agent N , 

f n N( ) ( ) /θ θ= .                       (4.1) 

We also assume that the threshold distribution f ( )θ  is symmetric with the property 

f f( ) ( )θ θ= −1 .                       (4.2) 

As specific examples, we consider the distribution functions as shown in Fig.6. In these 
cases, the average of the threshold is 0.5, i.e., 

θ θ θf d( ) .0

1 0 5z = .                        (4.3) 



 
(a) Case 1 (Identical distribution) (b) Case 2 (Normal distribution)    

 
(c) Case 3 (Uniform distribution)  (d) Case 4 (Polarized distribution) 

Fig.6: Several distribution functions of threshold: f ( )θ  
 

Type1: An agent who prefer S1 to S2 Type2: An agent who prefer S2 to S1  
(a) Random neighbor (b) Homogeneous neighbor (c) Heterogeneous neighbor 

Fig.7: Configurations of neighbor 
 
5. Evaluation of the Systems of Collective 
In this section, we evaluate collective of interacting heterogeneous agents with three criteria, 
stability, efficiency and equity. The stability of collective is from the point of the 
path-dependency of collective. We obtain and evaluate the proportion of agents who choose 
each strategy staring from any initial condition. Efficiency is evaluated by obtaining the average 
utility, which also stands for the measure of the desirability at the macro level. Equity is 
evaluated by obtaining the utility distribution, which stand for the measure of the desirability at 
the micro level. 
 
(1) Collective under symmetric interaction  

< Efficiency > 
We characterize collective at equilibrium by p* , which represents the proportion of agents to 
choose S1  at equilibrium. The efficiency of global adaptation is evaluated as follows: The 
adaptive rule of each agent at equilibrium is given by (3.2). Agents with the threshold θ  is 
less than or equal to p*  receive the utility at the level of 

u p= −* ( )1 θ  ( )*0 ≤ ≤θ p .                    (5.1) 



Agents whose threshold θ  are greater than p*  choose S2 , and then they receive their utility 
at the level of: 

u p= −( )*1 θ  ( )*p < ≤θ 1                     (5.2) 

Therefore, the average utility U  is obtained as: 

U p f d p f dp
p= −z + −z( ) ( ) ( ) ( )** *

*1 10

1θ θ θ θ θ θ              (5.3) 

From this equation, the average payoff (efficiency) U  depends on collective at equilibrium 
p*  and the threshold distribution f ( )θ .  

We consider of the following typical cases: 

(i) All agents choose the same strategy: S1 ( p* = 1) (or S2 ( p* = 0 )). 

(ii) A half of agents choose S1  and the rest of agents choose S2 ( p* .= 0 5 ). 

Efficiencies of the above two cases are obtained as, 

(i) p* = 1(or p* = 0 ): U = 0 5.  

(ii) p* .= 0 5 : U f d= − z0 5 0

0 5. ( ). θ θ θ                  (5.4) 

< Equity > 
The proportion of agents who gain the utility u  by choosing S1  is given as f ( )1−θ . 
Therefore, we have the utility distribution as follows: 

g u f f u p1 1( ) ( ) ( / )*= − =θ  ( , )* *0 0≤ ≤ ≠θ i p p             (5.5) 

The proportion of agents who gain the utility u  by choosing S2  is given by f ( )θ . Therefore, 
we have the utility distribution. 

g u f f u p2 1( ) ( ) ( / ( ))*= = −θ  ( , )* *p pi< ≤ ≠θ 1 1            (5.6) 

Therefore, the overall utility distribution is obtained as: 

g u g u g u( ) ( ) ( )= +1 2 .                       (5.7) 

The utility distribution g u( )  of collective equilibrium p*  is obtained as: 

(i) p* = 1  (or p* = 0 ): g u f u( ) ( )=  ( )0 1≤ ≤u  

(ii) p* .= 0 5 : g u f u( ) ( )= 2 2 ( . . )0 25 0 5≤ ≤u               (5.8) 

The Gini ratio ϕ ( )0 1≤ ≤ϕ  is often used to measure the extent to which the utility 
distribution of a society. The Gini ratio can be obtained from a Lorenz curve. The Gini ratio is 
obtained by measuring the area surrounded by the Lorenz curve L x( )  in Fig.8. The x  -axis 
represents the cumulative proportion of agents and y  -axis represents the cumulative 
proportion of the total utility L x( ) , which is cumulated to the proportion at the level x  
starting with the poorest agents. The Gini ratio ϕ  is then defined as 

ϕ = − z1 2 0

1L x dx( ) .                       (5.9) 

The measure of equity E  which global adaptation is then obtained as follows: 



E L x dx= − = z1 2 0
1ϕ ( )                       (5.10) 

Using the proportion of agents g u( )  who obtain the utility level u , the Lorenz curve L x( )  is 
given as follows: 

L x g d g dx( ) ( ) / ( )= z zτ τ τ τ τ τ0 0

1                    (5.11) 

Where w  is defined as the parameter satisfying x g dw= z ( )τ τ0 .  

 
Fig.8: The Lorenz curve and the Gini ratio 

 
(2) Collective under asymmetric interaction 
The adaptive rule of an agent who faces asymmetric interaction is given by (3.5). Agents whose 
threshold θ  is less than equal p*  at equilibrium receive the utility at the level of  

u p= −( )*1 θ  ( )*p ≤ ≤θ 1                     (5.14) 

Agents whose threshold θ  is greater than p* choose S2 , and they receives utility 

u p= −* ( )1 θ  ( )*0 < ≤θ p .                    (5.15) 

The average utility U  (efficiency) is obtained as the same as given in (5.3), and the efficiency 
and equity are the same as the case of symmetric interaction. 
 
6. Simulation Results  
We arrange a collection of heterogeneous agents in the area of 50 50×  (2500 agents in total) 
with no gap, and four corners and an edge of an area connect it with an opposite side. The 
consequence of their actions also gives an effect on agents with whom not directly linked. We 
are interested in the long-run behavior of collective when heterogeneous interacting agents 
adapt their decisions over time. We especially investigate how agents’ decisions combine with 
the decisions of the others produces the macro behavior. We impose only a weak monotonic 
condition reflecting the inertia and myopia hypotheses on the dynamics, which describe the 
changes in the number of agents playing each strategy. 
 
6.1  Collective of Symmetric Interaction 
 (1) Global adaptation 
The simulation results of global adaptation are shown in Fig.9. In Fig.9 (a), the x -axis 
represents the proportion of agents having chosen S1  initially and the y -axis represents 



collective p*  at equilibrium. Collective decision p*  at equilibrium depends on both the 
population structure and the initial value. In Fig.9 (b), and the y -axis represents the average 
utility U  at equilibrium. In all cases, efficiencies U  are less than 0.5. In Fig.9 (c), the 
y -axis represents the equity E  at equilibrium. 

 

 
(a) The collective   (b) The efficiency  (c) The equity 

case1 case2 case3 case4 
Fig.9: Simulation results of global adaptation 

 
(2) Local adaptation to random neighbors 
The simulation results of local adaptation with random neighbors are shown in Fig.10. 
Collective behavior is similar to the global adaptation model in Fig.9 (a), although the turning 
point is dull in all cases as shown in Fig.10 (a). The average utilities U  of all cases are almost 
0.5 (Fig.10 (b)). Efficiency is also close to the case of the global adaptation (Fig.9 (b)).  

 
(a) The collective   (b) The efficiency  (c) The equity 

case1 case2 case3 case4 
Fig.10: Simulation results of local adaptation 

 
(3) Local adaptation to homogeneous neighbors 
The simulation results with homogeneous neighbors are shown in Fig.11. Collective behavior 
p*  at equilibrium is about 0.5 starting from any initial point in Case 2, 3 and 4 (Fig.11 (a)). 

Simulation result of Case 1 is the same as the adaptation to random neighbors. The average 
utilities U  of all cases become to be more than 0.5 (Fig.11 (b)) and equity E  are also high 
(Fig.11 (c)). From these results, local adaptation to homogeneous neighbors result in desirable 
behavior. 



 
(a) The collective   (b) The efficiency  (c) The equity 

case1 case2 case3 case4 
Fig.11: Simulation results of local adaptation 

 
(4) Efficiency and equity  
In Fig.12, we summarize the simulation results. The x -axis represents equity E  and the 
y -axis represents efficiency, in term of the average utility U . With the global adaptation 

model, we obtain as follows: Case 1: ( , )E U = (1.0, 0.5), Case 2: (0.84, 0.5), Case 3: (0.89, 0.38) 
and Case 4: (0.94, 0.44). For the local adaptation model with random neighbors, we obtain as 
follows: Case 1: ( , )E U = (1.0, 0.5), Case 2: (0.61, 0.31), Case 3: (0.67, 0.44) and Case 4: (0.73, 
0.50). With the local adaptation model with homogeneous neighbors, we obtain as follows: 
Case 1: ( , )E U = (1.0, 0.5), Case 2: (0.95, 0.6), Case 3: (0.89, 0.73) and Case 4: (0.93, 0.86). 
Efficiency and equity are different depending on the way of interaction, although collective are 
almost the same. 

For a population of identical agents (Case 1), all agents have the same payoff and equity is 
the highest, however, the efficiency is moderate. In global adaptation with divers population, 
efficiency is moderate and equity is also high. In local adaptation with random neighbors, both 
efficiency and equity are low, and diversity tightens gap in efficiency and equity. with the 
homogeneous neighbors, both efficiency and equity become high. 

Global adaptation

Local adaptation to
 Homogeneous neighbor

Local adaptation to
 random neighbor

 
Fig.12: Efficiency and equity (the initial proportion: 0.5) 

 
6.2 Collective of Asymmetric Interactions   
(1) Global adaptation 
The simulation results of global adaptation are shown in Fig.13 since oscillation appears, with 
asymmetric interaction, we describe both maximum and minimum value of p t( ) in Fig.13 (a). 



However, in Case 3 and 4, oscillations are suppressed and efficiency U  and equity E  
become high. 

 
(a) The collective      (b) The efficiency        (c) The equity 

case1 case2 case3 case4 
Fig.13: Simulation results of global adaptation 

 
(2) Local adaptation to random neighbors 
The simulation results of local adaptation to random neighbors are shown in Fig.14. Collective 
behavior is similar to the global adaptation model as shown in Fig.13 (a), although the turning 
point is dull in all cases. In any cases, there are huge discrepancies among agents, the average 
utilities U  are less 0.5 and equities E  are low. From these results, the local adaptation model 
with random neighbors is becomes the same as the global adaptation model. 
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Fig.14: Simulation results of local adaptation 

 
(3) Local adaptation to heterogeneous neighbors 
The simulation results of local adaptation to homogeneous neighbors are shown in Fig.15. The 
collective behavior p*  at equilibrium is obtained as about 0.5 starting from any initial 
condition in Case 2, 3, and 4 as shown in Fig.15 (a). In spite of diversity of preferences, they 
show same as collective with the local adaptation to homogeneous neighbors. From these 
results, homogeneous interaction gives rise to the most desirable collective behavior by 
overcoming diversity of preferences. 
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Fig.15: Simulation results of local adaptation with heterogeneous neighbors 

(4) Efficiency and equity  
In Fig.16, we summarize the simulation results in terms of equity and efficiency. The x -axis 
represents equity E  and the y -axis represents efficiency, the average utility U . For the 
global adaptation model, we obtain as: Case 1: ( , )E U = (0.0, 0.0), Case 2: (0.0, 0.0), Case 3: 
(0.89, 0.38) and Case 4: (0.94, 0.44). For the local adaptation model to random neighbors, we 
obtain as: Case 1: ( , )E U = (0.69, 0.17), Case 2: (0.56, 0.31), Case 3: (0.66, 0.44) and Case 4: 
(0.73, 0.51). For the Local adaptation model with homogeneous neighbors, we obtain as: Case 
1: ( , )E U = (0.69, 0.17), Case 2: (0.73, 0.51), Case 3: (0.95, 0.75) and Case 4: (0.93, 0.87). 

For a collection of identical agents (Case 1), almost agents choose the same strategy and 
their utilities are 0 and efficiency is low. In other diverse populations, they have different 
properties. In global adaptation, efficiency is moderate and equity is high. In local adaptation to 
random neighbors, both efficiency and equity are low. With the heterogeneous neighbors, both 
efficiency and equity become high. 
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Fig.16: Efficiency and Equity (the initial proportion: 0.5) 

7. Conclusion  
In this paper we addressed the issue of collective decisions by heterogeneous agents in which 
they have to realize both efficient and equitable utilization of limited resources. Agents 
normally react to aggregate of others’ decisions, and the resulting volatile collective decision is 
often far from being efficient. By means of experiments, we showed that the overall 
performance depends crucially on the types of interacting decisions as well as the heterogeneity 
of agents in term of their preferences. We considered two different types of interaction, 
symmetric and asymmetric interaction. We showed that the most crucial factor that 



considerably improves the overall of the system is the way of information presentation to agents 
on aggregates. It was shown that the global information presentation on the whole aggregate is 
inefficient. The optimal guidance strategy to improves the efficiency and the fairness depends 
on the way of interactions. With symmetric coordination, the local information presentation 
regarding neighbor of the same type realizes the highest performance. With asymmetric 
coordination, however, the local information regarding neighbor of the different type realizes 
the highest performance.     
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