1. はじめに

熱交換器や電子機器といった伝熱機器を設計する際には、 固体と流体の間の熱の移動、すなわち対流熱伝達の知見が 必要になる。例えば、高温の流体が流れている配管があり、 それが流れ方向・厚み方向にどのような温度分布を持って いるか計算するには、高温の液体から配管内壁、および配 管外壁から周囲空気への伝熱量を知る必要がある。

しかし、対流による伝熱量を正確に求めるのは、実は容易なことではない。なぜなら、対流熱伝達は流体の物性値(熱伝導率、比熱、密度)だけでなく、流れの状態(層流か乱流か、乱流であるならその渦構造の挙動)にも大きく依存するためである。

とはいっても、機器を熱設計する際には熱伝達率が必要 になる。実際どのようにしているかと言えば、通常は、過 去に蓄積された経験式(例えば文献(1),(2))の中から流動 状態が近いと思われる式を選び、それを基に熱伝達率を"推 測"する方法が用いられてきた。ただし、あくまでも推測 にすぎず、信頼性の高い設計を行うためには、どうしても 実機に即した実験を行って温度や熱流束を実測する必要が ある。(最近はコンピュータによる熱流体解析が発達してき たため、流れが層流であれば熱伝達率を精度良く計算でき るようになった。しかし、乱流の場合には、正確な計算が 難しいのが現状である)

そこで、熱伝達率を実測する方法として、赤外線サーモ グラフィー(以下 IRT と呼ぶ)を用いた手法が普及しつつ ある。これは、近年の IRT の低価格化、高性能化(画素数、 温度分解能の向上)によるところが大きい。本稿では、IRT が熱伝達測定に利用されてきた歴史を振り返ると共に、最 近の高性能な IRT を用いたいくつかの測定事例について紹 介したい。

2. 赤外線サーモグラフィーによる熱伝達計測の歴史

IRT の熱伝達計測への応用は、既にいくつかのレビュー 論文(例えば文献(3))でまとめられているが、ここではそ の歴史について、新たな情報や筆者の考えを加えながら簡 単に振り返ってみたい。

対流熱伝達の測定に IRT が利用されたのは、IRT が製品 化され始めた 1960 年代後半まで遡る。1968 年には、極超 音速風洞内に置かれた物体からの熱伝達の評価に IRT が利 用された⁽⁴⁾。また、1970 年台後半には、IRT で測定された 熱伝達が、スペースシャトル再突入時の熱防御システムの 熱設計に利用されている⁽⁵⁾。

その後、1970年代後半から 1980年代にかけて、IRT は

(防衛大学校 中村 元)

超音速中の表面流れの可視化にも利用されるようになった。 例えば、IRT を用いて、物体表面の境界層が乱流遷移(流 れが層流から乱流に変化)する現象や、流れがはく離・再 付着する現象を検知できることが示されている。

1980年代後半からは、IRT の高性能化に伴い、常温域 (室 温+数+℃程度)の熱伝達も測定できるようになった。こ れによって、熱交換器や電子機器など一般の伝熱機器の熱 設計にも、IRT で取得したデータが利用できるようになっ た。従来の熱伝達測定では、主に熱電対などの点計測が行 われてきたが、IRT を用いると面の温度分布が非接触で測 定できるため、温度場を乱すことなく"ホットスポット" を特定できるという優位性を持っている。

ほとんどの伝熱機器では、流れのマッハ数が低く、物体 表面は空力加熱されないので、熱伝達を測定するには何ら かの方法で物体を加熱または冷却する必要がある。良く用 いられる手法として、物体表面に金属箔を接着し、それを 通電加熱した時に現れる温度分布を IRT で測定する方法 (薄膜加熱法)がある。この場合、対流熱伝達率 h は次式

 $h = \frac{q_{in} - q_L}{T_w - T_0} \tag{1}$

 q_m は通電加熱で与えられた熱流束、 q_L は熱伝導や熱放射に よる損失であり、 T_w は加熱金属箔の表面温度、 T_0 は主流温 度(加熱面の十分遠方における流体の温度)である。通常 は、赤外線の反射を抑えるため(放射率を1に近づけるた め)、金属箔には黒色の塗料が塗布される。この手法を用い て、例えば、平板衝突噴流による熱伝達、一様流中に置か れた物体からの熱伝達、壁面上の突起による伝熱促進とい った強制対流熱伝達や、垂直加熱平板からの自然対流熱伝 達などが測定されてきた。測定結果は、従来の熱電対等で 得られた結果とも良く一致しており、十分に信頼できるデ ータであることが示された。こうして、IRTを用いた測定 法は、物体表面の対流熱伝達分布を簡単に、しかも正確に 測定する手法として一般に認知されるようになった。

3. 測定事例(時間平均特性)

で求めることができる。

ここで、強制対流による熱伝達の測定事例として、流れ に直交した円柱からの熱伝達率の測定⁶⁰について紹介する。 円柱は、各種伝熱機器の構造体やピンフィンなどの伝熱促 進体として広く利用されており、しかも形状がシンプルで 実験が容易なことから、古くから非常に多くの実験が行わ れてきた。従来は、熱電対や熱流束センサといった点計測 が行われてきたが、IRT を用いることによって、これまで 明らかにできなかった面の複雑な熱伝達分布が容易に把握 できるようになった。

図1に、風洞実験装置及び加熱円柱模型を示す。円柱模型はアクリルパイプでできており、その表面に厚さ10 µmのステンレス箔が接着されている。箔の表面には、赤外線の放射率を高めるため黒ペイントが塗布されている。この円柱を風洞内に設置し、ステンレス箔を通電加熱した時の温度分布を IRT で測定した。

測定した温度分布の一例を図2に示す。これは円柱の測 方から撮影したもので、空気は図の上から下に向かって流 れている。円柱の前面では冷たい空気が流入するため良く 冷却されるが、円柱表面に沿った流れは側面ではく離する ため、その背後で風速が低下し、温度があまり低下しなく なる。なお、円柱前面から側面にかけては円柱の軸方向に 温度が一様であるが、背面では軸方向に非一様になってい る。これは、流れがはく離すると、流れの不安定性により 軸方向に非一様な流れとなるためである。従来の点計測で はこの現象を捉えるのが困難であったが、IRTを用いると、 熱伝達の非一様性を容易に把握することができる。

測定した温度分布 T_w から、式(1)により熱伝達率 h を計算し、円流周りの熱伝達率の分布(軸方向平均)を求めた。 その結果を図3に示す。ここでは、熱伝達をヌッセルト数 Nu (=hd/k:kは空気の熱伝導率)およびレイノルズ数 Re $(= u_0 d / v:v$ は空気の動粘性係数)を用いた無次元数 Nu/Re^{05} として表示している。

円柱の前方(ϕ = 0~80°)では流れが層流であるため、 Nu/Re⁰⁵の値はレイノルズ数に依存せず、ほぼ一本の曲線と なる。この分布は、従来の熱電対を用いた測定結果(Igarashi, Re = 10000)とも良く一致しており、IRT によって十分に精 度の高い測定が可能であることが確認できた。

4. 熱伝達の非定常性について

ここまでは、熱伝達の時間平均特性について述べてきた。 従来の研究では、ほとんどの場合、熱伝達率は時間平均値 として扱われており、この値をもとに機器の熱設計が行わ れてきた。しかし、流れが乱れると、壁面近傍に乱流渦構 造が形成され、それが複雑に変動する。そのため、実際に は対流熱伝達は時間的・空間的に複雑に変動している。

この非定常性が機器の熱設計に影響を及ぼすこともある。 例えば、原子力発電プラントの配管が熱伝達変動によって 高サイクル熱疲労を起こして損傷した事例^のも報告されて いる。そのため、少なくとも、損傷時の影響が大きい機器 を設計する場合には、熱伝達の非定常性を考慮する必要が ある。そのためには、熱伝達の時間・空間的な変動特性を 実測し、熱設計に使用できるようにデータベース化してお

(b) 加熱円柱模型の断面図(円柱直径 d=40 mm)

図1 流れに直交して置かれた円柱からの 強制対流熱伝達測定装置

図2 赤外線サーモグラフィーで測定した 温度分布の一例 (u₀=4 m/s, *Re_d*=9570)

く必要がある。

しかし、乱流熱伝達の非定常特性はこれまでほとんど計 測されてこなかった。これは、従来の測定法では、乱流に 伴う高速でかつ複雑な熱伝達変動を測定するのが困難であ ったからである。

それに対し、最近になって IRT の性能(画素数、フレーム速度、温度分解能)が飛躍的に向上してきたため、乱流による熱伝達の時間・空間的な変動を定量的に測定することが可能となりつつある。

5. 測定事例(時間·空間変動特性)

次に、乱流熱伝達の時間・空間的な変動特性を測定した 事例⁽⁸⁾について紹介する。

図4に実験装置を示す。これは、平板上に形成された乱 流境界層によって引き起こされる熱伝達の非定常性を測定 する装置である。低速風洞には長さ840mmの平板が設置 されており、その後方に加熱平板模型(アクリル製,厚さ 6mm,図4(b),(c))が段差なく接続されている。加熱平板 模型のアクリル板は一部がくり抜かれており(図4(c)の removed sections)、くり抜き部を覆うように、厚さ2µmの チタン箔が平板上面から下面の電極にかけて弛みのないよ うに接着されている。チタン箔は熱容量が非常に小さいた め、通電加熱すると、外部空気への熱伝達変動によって温 度が時間的・空間的に高速に変動する。これをIRT で測定 して乱流熱伝達の時間・空間的な変動を調べた。

なお、高速な変動を捉えるには、伝熱面の熱容量を極力 抑える必要がある。そのため、チタン箔には黒ペイントを 塗布せず金属面のままとした。この場合、観測面の放射率 が低く周囲からの赤外線が乱反射しやすくなるが、これを 抑制するため、観測面の周囲には黒ペイントを塗布し、周 囲温度ができるだけ均一になるようにした。また、IRT は 図4(a) のように観測面に対して 20°程度傾けて設置した。 これは、IRT から放射された赤外線が観測面で反射され、 それを自身で受光するのを避けるためである。

また、チタン箔の分光放射率(IRT の観測波長帯におけ る放射率)を評価するため、加熱した銅板にチタン箔を密 着させた模型を作製した。銅板には校正された熱電対を埋 め込み、その測定温度と IRT で受光した放射光強度を比較 することによって放射率を評価した。ここでは、チタン箔 の分光放射率は 0.20 (3~5 μm 帯)と評価された。

図5に、赤外線カメラ(TVS-8502,日本アビオニクス社) で測定した伝熱面温度の瞬時分布(左図)およびスパン方 向(z方向)分布の時間変化(右図)を示す。図5(a)が層 流境界層、図5(b)が乱流境界層の場合である。層流境界 層では流れが二次元的でかつ定常であるため、温度はスパ ン方向に一様であり、時間的にも変動しない。これに対し、 乱流境界層では流れの乱れに相応した温度の非一様性・非 定常性が現れる。従来の研究により、乱流境界層の壁近傍 には主流方向に長く伸びたストリーク構造が形成されるこ とが知られているが、図5(b)の瞬時温度分布には、この 構造に対応した温度分布が現れている。

次に、測定した温度分布の時系列データから、熱伝達率 の時空間分布を求めた。瞬時・局所の熱伝達率 h は、次式 で算出することができる。

$$h = \frac{q_{in} - q_{cd} - q_{rd} - c\rho\delta\frac{\partial T_w}{\partial t} + \lambda\delta\left(\frac{\partial^2 T_w}{\partial x^2} + \frac{\partial^2 T_w}{\partial z^2}\right)}{T_w - T_0}$$
(2)

上式は式(1)と同じものであるが、熱損失 q_L として、伝導 熱流束 q_{cd} と放射熱流束 q_{rd} だけでなく、チタン箔の熱容量 による時間遅れ $cp\delta(\partial T_w/\partial t)$ 、およびチタン箔の熱伝導に よる熱拡散 $\lambda\delta(\partial^2 T_w/\partial x^2 + \partial^2 T_w/\partial z^2)$ も考慮されている。 IRT で測定した温度分布は、箔の熱容量・熱伝導のため、

図6 乱流境界層における熱伝達の瞬時分布(左)とスパン方向分布の時間変化(右): u0=3 m/s, Re0=530

実際の熱移動現象と比較して時間的・空間的に減衰するが、 式(2)に従って熱伝達率を計算(逆解析)することで、時間 的・空間的な減衰を復元することができる。

図6に、(2)式により求めた熱伝達率(図5(b)に対応した もの)を示す。逆解析することにより、乱流渦構造に起因 した高速な熱移動現象が明瞭に復元されていることがわか る。

本測定結果を統計解析したところ、熱伝達変動の大きさ や空間的な構造(スパン方向の平均的な空間波長)は、乱 流の直接数値計算(DNS,渦構造の最小スケールまで解析) の結果と比較して妥当な値であることが確認できた⁽⁸⁾。す なわち、最近の高性能な IRT を用いると、これまで不可能 であった乱流熱伝達変動の定量的測定も実現できるように なった。

5. おわりに

本報では、赤外線サーモグラフィーが対流熱伝達の測定 に利用されてきた歴史を振り返ると共に、最近の高性能な サーモグラフィーを用いた測定事例について紹介した。赤 外線サーモグラフィーは、面の温度分布が非接触で測定で きるため、従来の点計測では困難であった複雑形状や複雑 な流れ場における熱伝達も容易に測定することができる。 また、伝熱面の熱容量を十分小さくすれば、乱流に伴う高 速で複雑な熱伝達の時間・空間的変動も測定可能である。 今後は、赤外線サーモグラフィーの高性能化と相まって、 これまで測定できなかったさまざまな伝熱現象が解明され ていくことが期待される。

参考文献

- 日本機械学会編,機械工学便覧(基礎編 α5),日本機 械学会 (2006).
- (2) 日本機械学会編, 伝熱工学資料(改訂第4版), 日本機 械学会 (1986).
- (3) Carlomagno, GM. and Cardone, G, Exp. Fluids, Vol.49 (2010), pp.1187-1218.
- (4) Thomann, H. and Frisk, B., Int. Heat and Mass Transf., Vol.11 (1968) pp.819-826.
- (5) Martinez, A. and Dye, W.H., NASA CR-151401 and NASA CR-151141 (1978).
- (6) 中村 元, 五十嵐保, 機論 B, 68 巻 675 号 (2002), pp.3122-3129.
- (7) 日本機械学会編:配管の高サイクル熱疲労に関する評価指針(JSMES 017),日本機械学会 (2003).
- (8) 中村 元, 機論 B, 73 巻 733 号 (2007), pp.1906-1914.