
European Journal of Operational Research 171 (2006) 693–707

www.elsevier.com/locate/ejor
Discrete Optimization

An exact algorithm for the knapsack sharing problem
with common items

Masako Fujimoto, Takeo Yamada *

Department of Computer Science, The National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan

Received 17 September 2003; accepted 30 September 2004
Available online 26 November 2004
Abstract

We are concerned with a variation of the knapsack problem as well as of the knapsack sharing problem, where we
are given a set of n items and a knapsack of a fixed capacity. As usual, each item is associated with its profit and weight,
and the problem is to determine the subset of items to be packed into the knapsack. However, in the problem there are s
players and the items are divided into s + 1 disjoint groups, Nk (k = 0,1, . . . , s). The player k is concerned only with the
items in N0 [Nk, where N0 is the set of �common� items, while Nk represents the set of his own items. The problem is to
maximize the minimum of the profits of all the players. An algorithm is developed to solve this problem to optimality,
and through a series of computational experiments, we evaluate the performance of the developed algorithm.
� 2004 Elsevier B.V. All rights reserved.

Keywords: Combinational optimization; Knapsack problem; Knapsack sharing
1. Introduction

In a previous work [17,18], we formulated the knapsack sharing problem (see also [6]) as an extension to
the standard 0–1 knapsack problem [12,9] and proposed a solution algorithm to solve that problem. It was a
combinatorial optimization problem [14] with a max-min type objective function, which has been widely
studied in various frameworks [1,2,8,11,16,19,3]. In this paper we further extend the problem and formulate
the knapsack sharing problem with common items, or the generalized knapsack sharing problem (GKSP), in
the following way.
0377-2217/$ - see front matter � 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2004.09.036

* Corresponding author. Tel.: +81 468 41 3810; fax: +81 468 44 5911.
E-mail address: yamada@nda.ac.jp (T. Yamada).

mailto:yamada@nda.ac.jp

694 M. Fujimoto, T. Yamada / European Journal of Operational Research 171 (2006) 693–707
As in the ordinary knapsack problem, we are given a set of n items N := {1,2, . . . ,n} and a knapsack
of fixed capacity C. Associated with item j 2 N is its weight wj and profit pj. Furthermore, s �players�
are involved in this problem and items are divided into s + 1 mutually disjoint subsets N0,N1, . . . ,Ns,
i.e.,
[s

k¼0
Nk ¼ N ; Nk \ Nl ¼ ; ðk 6¼ lÞ: ð1Þ
Here Nk is the set of player k�s items (k = 1, . . . , s). We assume that for each player all the items of other
players are worthless. We call these individual items, and by N I :¼

Ss
k¼1Nk we denote the set of all these

items. Contrary, N0 represents the set of common items; each of these is assumed to be of the identical worth
to all the players.

Let x = (xj) 2 {0,1}n be a solution vector, where xj = 1 if item j is put into the knapsack, and xj = 0
otherwise. Then, the value of x to player k is the sum of the profit from his own items and the profit from
the common items, i.e.,
p0ðxÞ þ pkðxÞ; ð2Þ
where
pkðxÞ :¼
X

j2Nk

pjxj: ð3Þ
Our problem is to maximize the minimum of these profits over all the players subject to the usual weight
and 0–1 constraints. Since p0(x) is common to all players, the problem can be written as follows.

GKSP:
Maximize zðxÞ :¼ min
16k6s
fpkðxÞg þ p0ðxÞ ð4Þ

subject to
X

j2N
wjxj 6 C; ð5Þ

xj 2 f0; 1g; j 2 N : ð6Þ
Without much loss of generality, we assume the following:
A1. Problem data C, pj and wj(j 2 N) are all positive integers.
A2.

P
j2Nwj > C and wj < C(j 2 N).

GKSP is NP-hard [5], since for s = 0 it reduces to the knapsack problem which is already NP-hard
[12]. Without common items (i.e., N0 = ;), GKSP is simply a knapsack sharing problem which is also
NP-hard [18].

In this paper we present a decomposition approach, where GKSP is solved to optimality by solving a
knapsack problem (KP) and a knapsack sharing problem (KSP) parametrically. We implemented this algo-
rithm, and evaluated this through a series of computational experiments.
2. Decomposition of the problem

First, we consider the following auxiliary knapsack problem.

M. Fujimoto, T. Yamada / European Journal of Operational Research 171 (2006) 693–707 695
KPk(c):
Maximize pkðxÞ ð7Þ

subject to
X

j2Nk

wjxj 6 c; ð8Þ

xj 2 f0; 1g; j 2 Nk: ð9Þ
Let the optimal objective value of this problem be zHKPk
ðcÞ. Specifically, for simplicity we write KP(c) and

zHKPðcÞ instead of KP0(c) and zHKP0
ðcÞ, respectively. Similarly, by zHKSPðcÞ we denote the optimal objective

value of the following knapsack sharing problem [18].

KSP(c):
Maximize min
16k6s
fpkðxÞg ð10Þ

subject to
X

j2N I

wjxj 6 c; ð11Þ

xj 2 f0; 1g; j 2 N I: ð12Þ
Now, from the total knapsack capacity C let us allocate capacity c to the common items, and remaining
C � c to the individual items. Then, GKSP is solved by finding the value of c that maximizes the sum of
zHKPðcÞ and zHKSPðC � cÞ, i.e.,

GKSP�:
Maximize zHðcÞ :¼ zHKPðcÞ þ zHKSPðC � cÞ ð13Þ
subject to 0 6 c 6 C: ð14Þ
We note that both KP and KSP are NP-hard, but for a fixed c these are relatively easy to solve in prac-
tice [12,18].

Let us consider zHKPk
ðcÞ and zHKSPðcÞ as functions defined on [0,1), and cHKPk

ðzÞ and cHKSPðzÞ denote the �in-
verse� functions of these respectively. More precisely, cHKPk

ðzÞ is defined as
cHKPk
ðzÞ :¼ minfcjzHKPk

ðcÞP zg ð15Þ
and cHKSPðzÞ is defined analogously. Then we have the following.

Theorem 1
(i) zHKPk
ðcÞ and zHKSPðcÞ are both monotonically non-decreasing, right-continuous step functions.

(ii) zHKSPðcÞ is obtained by adding zHKSPk
ðcÞ (1 6 k 6 s) horizontally. That is,
cHKSPðzÞ ¼
Xs

k¼1
cHKPk
ðzÞ: ð16Þ
Proof. (i) For zHKPk
ðcÞ, see [13]. The case of zHKSPðcÞ is proved analogously. (ii) Let cH :¼ cHKSPðzÞ for zP0.

Then, by definition we have zHKSPðcHÞP z. Let xw be an optimal solution to KSP(cw), and
define ck :¼

P
j2Nk

wjxHj . Then we have zHKPk
ðckÞP z (k = 1, . . . , s) and

Ps
k¼1ck 6 cH. Note that

zHKPk
ðckÞP z is equivalent to cHKPk

ðzÞ 6 ck. Thus, we have
Xs

k¼1
cHKPk
ðzÞ 6 cHKSPðzÞ: ð17Þ

696 M. Fujimoto, T. Yamada / European Journal of Operational Research 171 (2006) 693–707
Next, let cHk :¼ cHKPk
ðzÞ for z > 0, and define cH :¼

Ps
k¼1c

H

k . Then, we have zHKPk
ðcHk ÞP z, and altogether

the set of solutions to KPkðcHk Þ ðk ¼ 1; 2; . . . ; kÞ gives a feasible solution to KSP(c%) such that zHKSPðcHÞP z.
This implies
cHKSPðzÞ 6
Xs

k¼1
cHKPk
ðzÞ: ð18Þ
From (17) and (18), Theorem is proved. h
3. Lower and upper bounds

An upper bound to KPk(c) is obtained by relaxing (9) to 0 6 xj 6 1. The optimal objective value, de-
noted as �zKPk ðcÞ, is easily obtained [10,12]. Similarly, by continuous relaxation of (12) we obtain an upper
bound �zKSPðcÞ to KSP(c) [18]. Furthermore, let cKPk

(z) and cKSP(z) denote the inverse functions of �zKPk ðcÞ
and �zKSPðcÞ respectively. Then, we obtain the following [18].

Theorem 2
(i) �zKPk ðcÞ and �zKSPðcÞ are both piecewise linear, monotonically non-decreasing, concave functions.
(ii) �zKSPðcÞ is obtained by adding �zKPk ðcÞð1 6 k 6 sÞ horizontally. That is,
cKSPðzÞ ¼
Xs

k¼1
cKPk
ðzÞ: ð19Þ
Let us define
�zðcÞ :¼ �zKPðcÞ þ �zKSPðC � cÞ: ð20Þ
Then, since �zKPð�Þ and �zKSPð�Þ are both concave and piecewise linear, �zðcÞ is also a concave and piecewise
linear function. Let this function attain its maximum �z at �c 2 ½0;C�. Then clearly �z gives an upper bound
to GKSP. Next, by solving KPð�cÞ and KSPðC � �cÞ exactly, we obtain a feasible solution to GKSP, and thus
a lower bound
z :¼ zHKPð�cÞ þ zHKSPðC � �cÞ: ð21Þ
Example 1. Fig. 1 shows the functions �zKPðcÞ, �zKP1
ðC � cÞ and �zKP2

ðC � cÞ, together with �zKSPðC � cÞ and
�zðcÞ for a randomly generated instance with n = 30 and s = 2. The details of this example is available from
our web site [20]. We note that �zKSP is obtained as the horizontal sum of �zKP1

and �zKP2
. Here we have an

upper bound �z ¼ 8818 at �c ¼ 1999, and a lower bound z = 8666.
4. An exact algorithm

Without loss of generality we assume z < �z, since otherwise the problem is solved. Then, from concavity
of �zðcÞ, the equation
�zðcÞ ¼ z ð22Þ

admits two distinct real solutions cL and cU, where we assume cL < cU (see Fig. 1). Then, since we already
have a solution with the objective value z, in solving GKSP� we only need to examine c within the interval

Fig. 1. Upper and lower bounds.

M. Fujimoto, T. Yamada / European Journal of Operational Research 171 (2006) 693–707 697
[cL,cU]. Moreover, since zHKPðcÞ is a non-decreasing, right-continuous step function, it suffices to examine the
discontinuity points of zHKPðcÞ. Discontinuity points can be found by the algorithm LISTUP_DC_POINTS
given in Appendix A.

Thus, the algorithm to solve GKSP� is summarized as follows, where we start with the lower bound z,
which is taken as the initial incumbent solution.
Algorithm SOLVE_GKSP

At each discontinuity point c 2 [cL,cU] of zHKPð�Þ, do the following:

Step 1. Solve KP(c) exactly to obtain zHKPðcÞ.
Step 2. Check, by the procedure to be stated below, if

zHKSPðC � cÞ 6 z� zHKPðcÞ ð23Þ
holds. If YES go to Step 4.

Step 3. Update the lower bound z by

z zHKPðcÞ þ zHKSPðC � cÞ: ð24Þ
Step 4. Go to the next discontinuity point c.
Example 2. For the case of Example 1, Fig. 2 depicts the functions �zðcÞ and zHKPðcÞ (see [20] for details). We
have cL = 1651.9 and cU = 3194.3. Within the interval [cL,cU], zHKPðcÞ has four discontinuity points, and the
problem is solved at cw = 2261 where zw(c) attains the maximum zw = 8719.

Note that we do not necessarily need to solve KSP(C � c) exactly to check, in Step 2, if (23) holds. To
explain this, let us define
zy :¼ z� zHKPðcÞ: ð25Þ
Then, (23) becomes
zHKSPðC � cÞ 6 zy; ð26Þ

Fig. 2. The behavior of SOLVE GKSP(Generic).

698 M. Fujimoto, T. Yamada / European Journal of Operational Research 171 (2006) 693–707
which is equivalent to
cHKSPðzyÞP C � c: ð27Þ

Instead of solving KSP(C � c) exactly, we consider a less time consuming method to determine (26) or

(27). First, we note that cHKSPðzyÞ can be obtained, by solving the inverse knapsack problems IKPk(z
�)

(k = 1,2, . . . , s) defined in Appendix A, as cHKSPðzyÞ ¼
Ps

k¼1c
H

KPk
ðzyÞ. Next, we have the following.

Theorem 3
cHKSPðzÞP
Xs

k¼1
dcKPk

ðzÞeP dcKSPðzÞe: ð28Þ
Proof. Straightforward from Theorems 1 and 2. h

Based on this, we introduce the check level (CL) to determine (26) as follows.

• CL = 0: Determine (26) by solving KSP(C � c) exactly.
• CL = 1: Determine (27) by solving IKPk(z

�) exactly for k = 1, . . . , s.
• CL = 2: Check if
dcKSPðzyÞeP C � c ð29Þ

is satisfied first; if it fails then check (27) as in the case of CL = 1.

• CL = 3: Check (29) first; if it fails then check if
Xs

k¼1
dcKPk

ðzyÞeP C � c ð30Þ
holds, otherwise check (27).

M. Fujimoto, T. Yamada / European Journal of Operational Research 171 (2006) 693–707 699
For example, in the case of CL = 3 we first see if (29) holds. If it does, from (28) we have (27), and the
answer to Step 2 of SOLVE_GKSP is known to be �YES� without solving KSP exactly. Thus, by frequently
bypassing the time consuming calculation to solve KSP exactly, the total time of computation is reduced.
5. Numerical experiments

We have implemented the solution algorithm of the previous section in C language and conducted some
numerical experiments on an IBM RS/6000 Model 270 workstation. To solve KSP and KP inside the algo-
rithm, we used the methods of Yamada et al. [18] and Horowitz and Sahni [7], respectively.

5.1. Design of experiments

Throughout this section weights and profits of items are assumed uncorrelated, and these are distributed
uniformly over the interval [1, 1000]. We call this UNCOR type of problems. The number of items is be-
tween n = 29–215, the number of players is s = 2, 4 or 8, and the knapsack capacity is set to C = 200n. Since
the average weight of items is 500.5, this means that about 40% of items can be accommodated into the
knapsack. The ratio of the number of common items to n is denoted as k := jN0j/n, and we usually try
k = 1/2,1/4 and 1/8. The number of individual items is set to jNkj = (n � jN0j)/s (k = 1, . . . , s).

5.2. Check level

Fig. 3 shows the CPU seconds vs. check level. Here n = 2048, C = 200n and each measurement is the
average over ten randomly generated instances. From the figure, the CPU time is shortest for CL = 3. Thus,
from now on check level is fixed at CL = 3.

5.3. Comparison against an IP solver

We note that GKSP can be written as a linear 0–1 programming problem. Therefore, we compare our
method against a commercial IP solver NUOPT [15], which is a product of a Japanese software vendor and
is considered competitive to other popular solvers such as CPLEX, XPRESS-MP, or LINDO [4]. Fig. 4
shows the CPU time as a function of n for some values of k and s = 4. Our method is much faster, and
is able to solve larger problems than NUOPT.
Fig. 3. Check level vs. CPU seconds (n = 2048).

Fig. 4. Algorithm solve GKSP vs. NUOPT.

700 M. Fujimoto, T. Yamada / European Journal of Operational Research 171 (2006) 693–707
5.4. The result of experiments

Table 1 Panels (A)–(C) summarize the result of experiments for UNCOR instances. As in Figs. 3 and 4,
each row is the average over ten randomly generated instances. Here zw is the optimal objective value,]DC
is the number of discontinuity points of zHKPð�Þ examined, and]KSP and]KP are, respectively, the numbers
of KSP and KP solved to optimality.]KP includes the number of KPs solved within KSP as well.

From these tables we observe, approximately,
CPU time � n2:5:
The CPU time decreases as k decreases from 1/2 to 1/8, but it is rather insensitive to s. We also observe
the following:

1. zw increases linearly with n.
2. CPU time, zw,]KP and]DC all decrease as k decreases from 1/2 to 1/8, while n and s are kept constant.
3. If we increase s from 2 to 8 while keeping n and k constant, zw decreases and]KP and CPU time increase,

while]DC is relatively insensitive to s.

Fig. 5 depicts the CPU time as a function of k when n = 2048 or 4096. We note that k = 0 implies the
knapsack sharing problem [18] since in this case we have no common items, and k = 1 means the standard
knapsack problem. GKSP is easily solved in practice in these extremal cases, while it is most difficult to
solve for k 2 [0.7,0.9].

Finally, Fig. 6 shows the relation of the knapsack capacity to the CPU time in seconds. Here n = 2048,
k = 1/2 and the horizontal axis is a which is related to the knapsack capacity through a := C/n. Since
average weight of items is 500.5, a = 500 means that almost all items can be accommodated into the knap-
sack in this case. The problem is most difficult when about a half of items can be included in the knapsack.
6. Numerical experiments: Correlated cases

In this section we introduce correlation between the weights and profits of items as follows [12].

• Weakly correlated case (WEAK)
wj: Uniformly and independently random over [1,1000].
pj: Uniformly and independently random over [wj,wj + 200].

Table 1
The result of experiments

n k zw]DC]KSP]KP CPU (seconds)

Panel A: UNCOR, s = 2

512 1/2 143,207.6 263.7 3.5 602.1 0.279
1/4 118,747.4 76.2 1.6 137.6 0.039
1/8 105,372.9 36.5 1.1 58.8 0.014

1024 1/2 287,017.7 504.4 3.6 1098.6 1.428
1/4 238,262.9 179.0 1.6 287.0 0.229
1/8 212,265.9 55.4 1.2 83.6 0.047

2048 1/2 580,009.8 895.8 3.3 1730.7 7.607
1/4 478,850.5 348.4 3.0 496.7 1.151
1/8 426,933.0 105.8 1.4 146.6 0.202

4096 1/2 1,160,495.6 1223.7 3.7 2441.8 38.745
1/4 959,227.7 559.6 1.9 719.0 5.326
1/8 852,130.8 259.0 1.8 330.6 1.222

8192 1/2 2,320,109.1 1896.9 4.0 3535.8 228.598
1/4 1,917,876.8 771.8 1.6 1038.7 26.788
1/8 1,704,748.9 389.6 1.5 462.5 4.111

16,384 1/2 4,635,270.9 2556.6 2.8 4307.3 1559.285
1/4 3,835,638.7 1347.8 1.6 1808.5 183.417
1/8 3,409,682.5 651.4 1.3 809.9 23.320

32,768 1/2 9,278,281.5 3526.9 3.1 5632.5 9027.214
1/4 7,671,686.7 2042.0 2.0 2994.9 1532.052
1/8 6,826,241.1 1025.7 1.6 1380.6 155.206

Panel B: UNCOR, s = 4

512 1/2 129,161.2 194.5 4.2 926.8 0.180
1/4 89,622.4 79.6 2.9 354.3 0.054
1/8 67,943.7 32.5 1.7 143.4 0.021

1024 1/2 257,614.7 419.1 4.7 1926.8 1.202
1/4 179,284.2 161.2 2.1 575.8 0.266
1/8 136,604.4 58.9 1.1 185.9 0.073

2048 1/2 520,353.5 726.7 5.1 3259.6 7.078
1/4 359,129.1 268.8 2.8 963.4 1.395
1/8 274,233.0 109.6 1.6 318.1 0.363

4096 1/2 1,042,916.8 1382.1 5.0 6287.3 53.839
1/4 720,578.1 560.3 2.6 1782.2 8.908
1/8 546,848.4 244.7 1.6 646.0 2.144

8192 1/2 2,085,952.3 1949.2 5.3 8538.4 329.111
1/4 1,442,061.1 914.1 2.9 2710.5 51.042
1/8 1,095,595.0 386.2 2.0 822.2 8.035

16,384 1/2 4,164,292.5 2911.3 3.6 12,590.0 2682.876
1/4 2,885,712.1 1356.4 1.9 3748.1 338.651
1/8 2,192,246.5 549.4 1.6 830.3 26.047

32,768 1/2 8,335,031.6 3442.4 2.6 12,449.2 13,600.522
1/4 5,765,504.1 1703.5 1.8 3911.1 2095.001
1/8 4,389,332.8 926.7 1.1 1538.7 235.187

(continued on next page)

M. Fujimoto, T. Yamada / European Journal of Operational Research 171 (2006) 693–707 701

Table 1 (continued)

n k zw]DC]KSP]KP CPU (seconds)

Panel C: UNCOR, s = 8

512 1/2 124,412.4 175.2 4.5 1693.8 0.158
1/4 76,073.3 74.9 2.6 746.7 0.051
1/8 49,696.0 26.4 2.1 291.0 0.020

1024 1/2 247,913.5 452.2 5.3 4100.8 1.306
1/4 152,083.2 155.9 3.2 1428.1 0.279
1/8 99,697.9 49.5 1.8 449.6 0.083

2048 1/2 500,175.7 821.2 6.7 7361.1 8.334
1/4 303,629.9 316.2 3.4 2670.2 1.689
1/8 199,779.0 82.4 2.0 628.1 0.324

4096 1/2 1,003,363.9 1407.4 6.2 12,375.6 56.343
1/4 610,181.6 467.2 3.2 3740.4 8.146
1/8 398,089.8 181.1 1.7 1308.7 1.992

8192 1/2 2,007,457.8 2270.9 6.6 20,148.0 444.922
1/4 1,221,637.3 685.4 2.3 5294.0 45.467
1/8 798,697.7 259.4 1.6 1579.8 7.792

16,384 1/2 4,006,383.7 2933.1 5.6 25,640.2 3130.824
1/4 2,445,181.6 1018.0 1.7 7728.6 337.385
1/8 1,598,601.3 434.7 1.5 2399.4 40.899

32,768 1/2 8,020,818.2 3640.1 4.7 31,579.0 18,134.677
1/4 4,881,680.3 1223.9 1.8 8325.3 2045.644
1/8 3,200,604.0 611.9 1.5 2553.9 225.649

Fig. 5. CPU seconds vs. k.

Fig. 6. CPU seconds vs. knapsack capacity (n = 2048,k = 1/2).

702 M. Fujimoto, T. Yamada / European Journal of Operational Research 171 (2006) 693–707

Table 2
The result of experiment

n k zw]DC]KSP]KP CPU (seconds)

Panel A: WEAK, s = 2

512 1/2 127,519.4 238.4 3.3 565.2 0.550
1/4 105,164.2 4.4 1.0 18.4 0.012
1/8 87,180.9 3.3 1.0 16.5 0.018

1024 1/2 254,911.4 422.3 2.7 1032.9 2.771
1/4 211,701.8 4.1 1.0 16.9 0.032
1/8 175,337.4 3.4 1.0 15.0 0.030

2048 1/2 511,051.1 601.5 3.4 1425.7 9.665
1/4 424,127.6 3.7 1.0 14.9 0.065
1/8 352,725.4 3.4 1.0 15.6 0.074

4096 1/2 1,022,660.1 769.2 2.8 1343.0 32.135
1/4 846,463.8 3.6 1.1 13.9 0.172
1/8 704,942.3 3.1 1.0 13.4 0.133

8192 1/2 2,045,190.8 1041.2 2.9 1502.0 171.262
1/4 1,690,568.5 3.5 1.1 14.3 0.600
1/8 1,408,351.9 3.4 1.3 15.1 0.465

16,384 1/2 4,090,299.4 1364.2 3.6 1731.9 969.199
1/4 3,382,300.0 3.8 1.3 13.0 3.006
1/8 2,813,502.7 3.4 1.6 12.6 1.647

32,768 1/2 8,181,635.5 1762.6 6.3 1957.0 4853.373
1/4 6,762,091.4 4.3 1.6 12.9 15.181
1/8 5,629,033.8 3.8 1.5 10.3 5.738

Panel B: WEAK, s = 4

512 1/2 126,892.1 101.6 3.4 484.6 0.225
1/4 90,496.8 3.9 1.0 32.0 0.010
1/8 62,224.7 3.3 1.0 29.3 0.012

1024 1/2 253,609.3 199.3 3.5 950.0 1.272
1/4 183,184.0 3.7 1.0 29.2 0.022
1/8 125,590.6 3.5 1.0 29.6 0.030

2048 1/2 508,314.7 306.2 3.2 1421.2 4.629
1/4 366,548.6 3.5 1.0 27.5 0.063
1/8 253,698.6 3.3 1.0 26.7 0.070

4096 1/2 1,017,781.5 406.2 4.0 1793.8 17.440
1/4 730,029.7 3.6 1.0 25.1 0.164
1/8 506,959.7 3.3 1.0 24.7 0.140

8192 1/2 2,035,157.5 567.9 4.2 2328.1 98.996
1/4 1,456,232.2 3.5 1.0 23.1 0.464
1/8 1,010,978.5 3.2 1.0 22.0 0.284

16,384 1/2 4,070,231.1 722.2 3.8 2542.9 554.726
1/4 2,914,961.1 3.3 1.1 20.3 1.833
1/8 2,017,694.9 3.2 1.2 21.0 0.848

32,768 1/2 8,141,805.1 914.3 3.2 2115.3 2706.472
1/4 5,826,061.8 3.7 1.3 19.7 9.442
1/8 4,038,326.1 3.3 1.1 16.8 3.324

(continued on next page)

M. Fujimoto, T. Yamada / European Journal of Operational Research 171 (2006) 693–707 703

Table 2 (continued)

n k zw]DC]KSP]KP CPU (seconds)

Panel C: WEAK, s = 8

512 1/2 126,847.0 8.4 1.0 9.6 0.016
1/4 83,150.0 4.6 1.0 69.1 0.011
1/8 49,745.1 3.6 1.0 59.0 0.012

1024 1/2 253,418.2 68.3 1.9 452.3 0.410
1/4 168,917.5 4.2 1.0 57.4 0.024
1/8 100,704.8 3.6 1.0 56.8 0.028

2048 1/2 507,845.8 210.8 4.1 1812.6 3.110
1/4 337,759.4 3.8 1.0 55.6 0.059
1/8 204,181.8 3.7 1.0 54.5 0.067

4096 1/2 1,016,903.4 287.0 4.3 2451.6 11.421
1/4 671,807.3 3.7 1.0 46.9 0.146
1/8 407,966.9 3.3 1.0 44.9 0.125

8192 1/2 2,033,541.4 380.1 4.6 3084.4 65.622
1/4 1,339,059.3 3.7 1.0 44.7 0.458
1/8 812,289.1 3.4 1.0 42.4 0.271

16,384 1/2 4,067,029.5 533.5 4.8 4191.4 397.001
1/4 2,681,285.0 3.7 1.0 40.2 1.909
1/8 1,619,794.0 3.2 1.0 38.5 0.688

32,768 1/2 8,135,309.6 615.8 4.9 4130.4 1784.810
1/4 5,358,043.8 3.3 1.0 34.3 6.643
1/8 3,242,973.2 3.2 1.1 32.7 2.268

Table 3
The result of experiments (STRONG)

n s k zw]DC]KSP]KP CPU (seconds)

256 2 1/4 52,026.7 9.2 1.0 20.9 0.454
1/8 42,683.6 5.7 1.0 18.8 13.124

4 1/4 44,870.9 7.7 1.0 36.3 0.037
1/8 30,477.1 4.8 1.0 31.6 0.443

8 1/4 41,298.8 6.8 1.0 61.0 0.012
1/8 24,381.8 4.6 1.0 58.3 0.011

512 2 1/4 104,073.9 15.2 1.0 28.3 169.739
1/8 85,804.4 9.6 1.0 21.3 3905.249

4 1/4 89,928.3 10.1 1.0 33.8 0.777
1/8 61,772.7 6.4 1.0 30.2 51.819

8 1/4 82,856.6 8.0 1.0 59.1 0.104
1/8 49,753.6 5.9 1.0 58.0 0.393

1024 8 1/4 166,363.1 13.5 1.0 64.7 3.275
1/8 99,783.3 8.3 1.0 55.6 42.066

704 M. Fujimoto, T. Yamada / European Journal of Operational Research 171 (2006) 693–707
• Strongly correlated case (STRONG)
wj: Uniformly and independently random over [1,1000].
pj: pj = wj + 100.

Table 2 Panels (A)–(C) and Table 3 summarize the results of the WEAK and STRONG cases respec-
tively. Comparing Tables 1 and 2, we observe the following:

Fig. 7. Function �zðcÞ for the case of WEAK.

M. Fujimoto, T. Yamada / European Journal of Operational Research 171 (2006) 693–707 705
1. For the same values of n,k and s,]DC and]KP are substantially smaller in WEAK than in UNCOR.
2. Consequently, CPU time is also smaller in WEAK.

For the problem with n = 215 items weakly correlated instances can be solved 10–100 times faster than
uncorrelated counterparts.

The reason for this is explained in Fig. 7 (For the details, refer to [20]). Correlation between weights and
profits makes functions �zKPðcÞ and �zKSPðcÞ almost a straight line, and thus their sum �zðcÞ is pointed at ð�c;�zÞ.
Then, the interval between cL and cU is much smaller in correlated case than in uncorrelated case, and thus
in UNCOR we need to examine a wider interval; consequently the CPU time to do this is longer.

However, in the strongly correlated case, the problem is hard to solve. Indeed, in this case we were only
able to solve problems with n 6 1024, as shown in Table 3. This is because the Horowitz–Sahni method [7]
used to solve KPs in our algorithm is very inefficient for such type of problems.
7. Conclusion

In this paper we have formulated the GKSP, developed a solution algorithm, and conducted some
numerical experiments. Our algorithm outperformed a commercial software, and we were able to solve
problems with up to n = 215 items to optimality. Strongly correlated case remains difficult to solve, and this
is left for future work.
Appendix A. Finding all the discontinuity points of zHKP(c)

In the algorithms of Section 4, we had to list up all the discontinuity points of zHKPðcÞ within [cL,cU]. We
may use the dynamic programming approach of Nemhauser and Ullman [13] for this purpose. However,
this method is primarily for the interval of the form [0,c], and is not efficient enough for [cL,cU], especially
when we have large cL and relatively small cU � cL.

Here we give an algorithm to list up all the discontinuity points of zHKPð�Þ within the interval [cL,cU]. First,
we introduce the following inverse knapsack problem.

706 M. Fujimoto, T. Yamada / European Journal of Operational Research 171 (2006) 693–707
IKPk(z):
Ste
Ste

Ste

Ste

Ste
Ste

Ste

Ste
Minimize
X

j2Nk

wjxj ð31Þ

subject to
X

j2Nk

pjxj P z; ð32Þ

xj 2 f0; 1g; j 2 Nk: ð33Þ
If (33) is continuously relaxed to 0 6 xj 6 1, we have problem IKPk(z). Then, the following holds.

Theorem 4. The optimal objective values of IKPk(z) and IKPk(z) are, respectively, cHKPk
ðzÞ and cKPk

(z).

Proof. These are obvious from the definitions of cHKPk
ðzÞ and cKPk

(z). h

In what follows, we are concerned with IKP0(z), and for simplicity suffix 0 is dropped unless otherwise
stated. The following algorithm solves our problem:
Algorithm LISTUP_DC_POINTS(Generic)

p 1. Set c := cU.
p 2. If c 6 cL stop. Otherwise solve KP(c) exactly to obtain zH :¼ zHKPðcÞ.
p 3. Solve IKP(zH) to obtain the optimal objective value cH :¼ cHKPðzHÞ. Output (cH,zH) as a dis-

continuity point.
p 4. Set c := cH � 1 and go back to Step 2.
Here we note that IKP(z) can be solved by converting it into a standard knapsack problem through the
change of variables yj := 1 � xj (j 2 N). Thus, in the above algorithm we need to solve two knapsack prob-
lems per discontinuity point. Using the notation of Section 5.4, we have
#KP ¼ 2#DC: ð34Þ

We may further reduce the number of KPs we need to solve to list up all the discontinuity points in the

following way. That is, in Step 2 if we use Horowitz–Sahni algorithm (H–S method for short, [7]) to solve
KP(c) and obtain an optimal solution x� with the objective value zy :¼

P
j2N0

pjx
y
j and weight

cy :¼
P

j2N0
wjx

y
j , (c

�,z�) frequently happens to be a discontinuity point. Then, the algorithm is revised as
follows.
Algorithm LISTUP_DC_POINTS

p 1. Solve KP(cU) using H–S method to obtain (c�,z�).
p 2. If c� 6 cL stop. Otherwise solve KP(c� � 1) by H–S method, and obtain (c 0,z 0).
p 3. If z 0 = z�, let c� := c 0 and go to Step 2.
p 4. Output (c�,z�) as a discontinuity point. Let (c�,z�) (c 0,z 0), and go back to Step 2.
If in the above algorithm Step 3 never occurs, we have #KP = #DC. In practice, in the numerical exper-
iments of Sections 5 and 6, this was usually
#KP 6 1:05#DC: ð35Þ

Comparing this against (34), we see that the revised algorithm is approximately twice faster than the

original.

M. Fujimoto, T. Yamada / European Journal of Operational Research 171 (2006) 693–707 707
References

[1] J.R. Brown, The knapsack sharing problem, Operations Research 27 (1979) 341–355.
[2] J.R. Brown, Bounded knapsack sharing, Mathematical Programming 67 (1994) 343–382.
[3] D.-Z. Du, P.M. Pardalos (Eds.), Minimax and Applications, Kluwer, 1995.
[4] R. Fourer, Software survey: Linear programming, OR/MS Today 26 (1999) 64–71.
[5] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman and Company,

1979.
[6] M. Hifi, S. Sadfi, The knapsack sharing problem: An exact algorithm, Journal of Combinatorial Optimization 6 (2002) 35–54.
[7] E. Horowitz, S. Sahni, Computing partitions with applications to the knapsack problem, Journal of ACM 21 (1974) 277–292.
[8] S. Kaplan, Application of programs with maximin objective functions to problems of optimal resource allocation, Operations

Research 22 (1974) 802–807.
[9] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer-Verlag, 2004.
[10] T. Kuno, H. Konno, E. Zemel, A linear-time algorithm for solving continuous maximin knapsack problems, Operations Research

Letters 10 (1991) 23–26.
[11] H. Luss, Minimax resource allocation problems: Optimization and parametric analysis, European Journal of Operational

Research 60 (1992) 76–86.
[12] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Implementations, John Wiley & Sons, 1990.
[13] G.L. Nemhauser, Z. Ullmann, Discrete dynamic programming and capital allocation, Management Science 15 (1969) 494–505.
[14] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley & Sons, 1988.
[15] Mathematical Systems Inc., NUOPT Manual, Available from: <http://www.msi.co.jp/nuopt>, 2002.
[16] C.S. Tang, A max-min allocation problem: Its solutions and applications, Operations Research 36 (1988) 359–367.
[17] T. Yamada, M. Futakawa, Heuristic and reduction algorithms for the knapsack sharing problem, Computers & Operations

Research 24 (1996) 961–967.
[18] T. Yamada, M. Futakawa, S. Kataoka, Some exact algorithms for the knapsack sharing problem, European Journal of

Operational Research 106 (1998) 177–183.
[19] T. Yamada, H. Takahashi, S. Kataoka, A branch-and-bound algorithm for the mini-max spanning forest problem, European

Journal of Operational Research 101 (1997) 93–103.
[20] T. Yamada, Available from: <http://www.nda.ac.jp/~yamada/ypublication.html>, 2004.

http://www.msi.co.jp/nuopt
http://www.nda.ac.jp/~yamada/ypublication.html

	An exact algorithm for the knapsack sharing problem with common items
	Introduction
	Decomposition of the problem
	Lower and upper bounds
	An exact algorithm
	Numerical experiments
	Design of experiments
	Check level
	Comparison against an IP solver
	The result of experiments

	Numerical experiments: Correlated cases
	Conclusion
	Finding all the discontinuity points of {z}_{{\rm{KP}}}^{\starf}(c)
	References

