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Abstract

The knapsack problem (KP) is generalized to the case where items are partially ordered through a set of precedence
relations. As in ordinary KPs, each item is associated with profit and weight, the knapsack has a fixed capacity, and
the problem is to determine the set of items to be packed in the knapsack. However, each item can be accepted only when
all the preceding items have been included in the knapsack. The knapsack problem with these additional constraints is
referred to as the precedence-constrained knapsack problem (PCKP). To solve PCKP exactly, we present a pegging
approach, where the size of the original problem is reduced by applying the Lagrangian relaxation followed by a pegging
test. Through this approach, we are able to solve PCKPs with thousands of items within a few minutes on an ordinary
workstation.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V,E) be a directed graph [10] with vertex set V = {1,2, . . . ,n} and edge set E � V · V. Here, V rep-
resents the set of items that can be included into a knapsack of capacity c. Associated with each j 2 V are its
weight wj and profit pj. Without much loss of generality we assume that parameters wj, pj (j = 1, . . . ,n) and c
are all positive integers. The set of edges E represents precedence relations between the items. That is, (i, j) 2 E

implies that item j can be accepted only when item i has been included in the knapsack. Throughout the paper,
we put m :¼ |E|, and assume that G is acyclic, i.e., no directed cycle is included in G, since otherwise the pre-
cedence relations are not well defined.
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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The problem can be formulated mathematically as a 0–1 programming problem. Let xj be a variable such
that
xj ¼
1; if item j is accepted;

0; otherwise:

(

Then, we have the following precedence-constrained knapsack problem [21].

PCKP:
maximize zðxÞ :¼
Xn

j¼1

pjxj ð1Þ

subject to
Xn

j¼1

wjxj 6 c; ð2Þ

xi P xj; 8ði; jÞ 2 E; ð3Þ

xj 2 f0; 1g; 8j 2 V : ð4Þ
Here, without loss of generality, we assume that
wj 6 c ð8j 2 V Þ;
Xn

j¼1

wj > c
since otherwise the problem is trivial.
Precedence relations arise naturally as a consequence of logical/physical requirements among items. For

example, in a project management activities are usually arranged in the form of a flow chart or a network,
and each activity can be initiated only when all the preceding activities have been finished. Or, in open-pit min-
ing [2] we can remove a block only when all the blocks lying immediately above have been removed. Math-
ematically, these relations are represented in the form of inequality (3). Then, if we wish to complete as many
projects as possible, or excavate as many blocks as possible within a fixed time limit, we need to solve PCKP.

PCKP is NP-hard [9]; because without precedence constraint (3), it reduces to the knapsack problem (KP,
[17,15]), which is already NP-hard. An important subclass of PCKP is the tree-knapsack problem (TKP,
[5,22,14,12]), where G is a directed tree rooted at node 1. Hirabayashi et al. [11] formulated a tool-module
design problem as a PCKP on a bipartite graph. Moriyama et al. [18] generalized this into a PCKP under
the name of partially-ordered knapsack problem, and developed a branch-and-bound algorithm with some
numerical experiments. Samphaiboon et al. [21] presented a dynamic programming algorithm to solve this
problem. If the size of the problem is not so large, it may be solved by commercial or free IP solvers [8]. Using
NUOPT [20], a popular IP solver in Japan, we were able to solve most of the randomly generated PCKPs with
up to n = 2000, but for larger problems we often encountered difficulties in obtaining exact solutions.

In this paper, we propose a novel approach to solve larger PCKPs exactly as follows. First, we eliminate
constraints (3) by applying the Lagrangian relaxation, and together with the continuous relaxation of (4),
the result is a continuous knapsack problem. Then, the pegging test for ordinary KPs can be applied, and if
the Lagrangian multipliers are well tuned up, we obtain a PCKP of substantially reduced size. With the pre-
cedence constraint (3), we can further derive an improved block pegging test, and the reduced PCKPs are often
solved by commercial IP solvers. We implement these algorithms, and evaluate the developed method through
a series of computational experiments.
2. Upper and lower bounds

This section derives an upper bound by applying the Lagrangian relaxation [19,23] to PCKP. We also present
a local search [1] algorithm to obtain a good approximate solution quickly, which gives a lower bound to
PCKP.
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2.1. Lagrangian relaxation

Given a nonnegative multiplier k :¼ (kij) 2 Rm, the Lagrangian relaxation of PCKP is
LPCKP(k):
Alg

St

St

St

St

St

St
maximize L :¼
Xn

j¼1

pjxj þ
X
ði;jÞ2E

kijðxi � xjÞ ð5Þ

subject to
Xn

j¼1

wjxj 6 c; ð6Þ

0 6 xj 6 1; 8j 2 V : ð7Þ
Here kij is the Lagrangian multiplier associated with constraint (3). With 0–1 requirement (4) relaxed to con-
tinuous inequality (7), LPCKP(k) is actually a continuous Lagrangian relaxation of PCKP.

The objective function (5) can be rewritten as
L :¼
Xn

j¼1

pj þ
X
k2Sþj

kjk �
X
i2S�j

kij

0
@

1
Axj; ð8Þ
where Sþj (resp. S�j ) is the set of terminating (resp. originating) vertices of edges that originate from (resp. ter-
minate in) node j. If we fix k P 0, LPCKP(k) is the continuous KP whose solution is easily found [16]. Let
�xðkÞ ¼ ð�xjÞ denote an optimal solution to LPCKP(k) with the corresponding optimal value �zðkÞ, and zw is
the optimal objective value to PCKP. Then, we have
zH
6 �zðkÞ; ð9Þ
i.e., �zðkÞ gives an upper bound to PCKP. As a function of k, it is known [19,23] that

(i) �zðkÞ is a piecewise-linear, convex function of k,
(ii) if �zðkÞ is differentiable at k,
o�zðkÞ
okij

¼ �xi � �xj; 8ði; jÞ 2 E; ð10Þ
(iii) for an arbitrary k P 0, if �xðkÞ is feasible to PCKP and
kijð�xi � �xjÞ ¼ 0; 8ði; jÞ 2 E; ð11Þ

then �xðkÞ is an optimal solution to PCKP.

2.2. Subgradient method

For an arbitrary k P 0,�zðkÞgives an upper bound to PCKP. To make this value as small as possible, we employ
the following subgradient method [19], where a subgradient is the vector g = (gij) whose element is given by (10) as
gij :¼ �xi � �xj. Then, the direction of search d = (dij) is the projection of �g on the non-negative space, i.e.,
dij :¼
�gij; if kij > 0 or ðkij ¼ 0 and gij < 0Þ;
0; otherwise:

�

orithm Subgradient_Method

ep 1. Set k = 0.
ep 2. Solve LPCKP(k).
ep 3. Calculate the subgradient g and the direction of search d.
ep 4. (1-dim search) Find a� P 0 such that �zðkþ adÞ is minimized.
ep 5. If (11) is satisfied or �zðkÞ ffi �zðkþ aydÞ, stop.
ep 6. Update k k + a�d and go to Step 2.
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Let k� be k at the termination of the above algorithm. Then, we obtain the ‘best’ upper bound to PCKP as
�z :¼ �zðkyÞ.

2.3. Lower bounds

Let �xðkyÞ ¼ ð�xyjÞ be an optimal solution to LPCKP(k�). If this satisfies (3) and (4), this is a feasible solution;
hence, the corresponding objective value gives a lower bound to PCKP. If some of the constraints (3) and (4)
are violated, we still obtain a feasible solution by modifying �xðkyÞ in the following way: if 0 < �xyj < 1 for some
j 2 V or if �xyj > �xyi for some (i, j) 2 E, we simply put �xyj  0. We call the resulting feasible solution the Lagrang-

ian solution to PCKP.
To further improve the solution, we employ the 2-opt method [1], which repeat the following as long as

possible.
Procedure 2-opt

(i) In the current solution x find a pair of items i and j, such that xi = 1 and xj = 0, and furthermore
these can be swapped as xi = 0 and xj = 1 without destroying feasibility of the resulting solution.

(ii) If this increases the value of the knapsack, carry out this swapping.
We call the resulting solution the 2-opt solution, with the corresponding lower bound denoted as z.

3. Pegging tests

A pegging test is well known for the standard 0–1 KP [13,7,6]. By applying this test, many variables are
fixed either at 0 or 1, and removing these variables we obtain a problem of (often significantly) reduced size.
In this section, we show that the same pegging test can be applied to PCKPs if we introduce the Lagrangian
relaxation first.

3.1. Plain pegging test

Assume that we have an optimal Lagrangian multiplier k�, the corresponding upper bound �z ¼ �zðkyÞ, and a
lower bound z to PCKP, and let us define:
�pj :¼ pj þ
X
k2Sþj

kyjk �
X
i2S�j

kyij: ð12Þ
Then, LPCKP(k�) can be rewritten as
maximize
Xn

j¼1

�pjxj ð13Þ

subject to ð6Þ and ð7Þ: ð14Þ
For an arbitrary j = 1, . . . ,n, let zw(xj = u) denote the optimal objective value to PCKP with an additional
constraint xj = u, where u is either 0 or 1. Similarly, �zðxj ¼ uÞ denotes the optimal objective value to LPCKP(k�)
with xj = u. Then, for j = 1, . . . ,n the followings are obvious.
zH ¼ maxfzHðxj ¼ 0Þ; zHðxj ¼ 1Þg; ð15Þ

zHðxj ¼ uÞ 6 �zðxj ¼ uÞ: ð16Þ
Then, if
�zðxj ¼ 0Þ < z; ð17Þ
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xH

j ¼ 0 is not possible in any optimal solution xH ¼ ðxH

k Þ to PCKP, i.e., we necessarily have xH

j ¼ 1. Similarly,
in the case that
�zðxj ¼ 1Þ < z; ð18Þ
xH

j ¼ 0 must follow. This is the basic idea of the pegging test. To determine (17) and (18) quickly, the following
shortcut is taken. First of all, without loss of generality, we assume the following.

A1: �pj > 0; 8j 2 V ,
A2: The items are ordered in the non-increasing order of �pj=wj.

Let Wj and Pj be, respectively, the cumulative weight and profit, i.e.,
W j :¼
Xj

i¼1

wi; P j :¼
Xj

i¼1

�pi; ð19Þ
where W0 = P0 = 0. Then, {(Wj,Pj)jj = 0, . . . ,n} gives a piecewise-linear, monotonically non-decreasing, con-
cave function [16].

The intersection of this broken line with the vertical line W = c gives the upper bound �z. The item s satis-
fying Ws�1 < c 6Ws is said to be a critical item, and we define
rs :¼ �ps=ws:
Here, if for any j < s we set xj = 0, it is known [13,7] that
�zðxj ¼ 0Þ 6 �z� hj; ð20Þ
where we define
hj :¼ �pj � rswj: ð21Þ

Then, if
�z� z < hj; ð22Þ

from (20) we have �zðxj ¼ 0Þ < z, and thus xH

j ¼ 1. By a similar argument, if
�z� z < �hj ð23Þ

for any j > s, we obtain xH

j ¼ 0. Thus we have the following.

Theorem 1. For any optimal solution xH ¼ ðxH

j Þ to PCKP, both of the followings are true.

(i) �z� z < hj ) xH

j ¼ 1,

(ii) �z� z < �hj ) xH

j ¼ 0.
Given a pair of upper and lower bounds, by applying this theorem some variables are fixed either at 0 or 1,
and removing these variables we obtain a PCKP of (often significantly) reduced size. We call this reduction by
pegging test, and thus obtain a reduced problem.

3.2. Block pegging test

Again, we consider LPCKP(k�), and assume A1 and A2 as before. Item s stands for the critical item. In the
acyclic graph G = (V,E), if there exists a directed path from node i to j, we say that j is a descendent of i. By Dj

we denote the set of all descendents of j, where we note that this includes node j itself. Furthermore, for an
arbitrary node j, we define a subset of Dj by
D0j :¼ fk 2 Djjk < sg:
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Then, by setting xj = 0, we have xk = 0 for all k 2 D0j, and the broken line connecting (W0,P0),
(W1,P1), . . . , (Wn,Pn) will be shifted to the lower leftwards by ðw0j; p0jÞ, where we put
Alg

St
St

St
w0j :¼
X
k2D0j

wk; �p0j :¼
X
k2D0j

�pk: ð24Þ
Define
Hj :¼ �p0j � rsw0j: ð25Þ

Then, similar to (22) if
�z� z < Hj ð26Þ

we necessarily obtain xH

j ¼ 1.
Similarly by considering the case of j > s, we obtain the following theorem.

Theorem 2. For any optimal solution xH ¼ ðxH

j Þ to PCKP, both of the followings hold.

(i) �z� z < Hj ) xH

j ¼ 1,

(ii) �z� z < �Hj ) xH

j ¼ 0.
3.3. Pegging algorithm

Now we can solve PCKP in the following way.
orithm Plain_Pegging (resp. Block_Pegging)

ep 1. Compute the upper and lower bounds by the Lagrangian relaxation and 2-opt methods.
ep 2. Reduce the problem size by applying Theorem 1 (resp. Theorem 2).
ep 3. Solve the reduced problem using an appropriate IP solver.
Here, if we use the plain pegging test (Theorem 1) to reduce the problem size, we call this the plain pegging;

and if Theorem 2 is used, we have the block pegging algorithm. Step 2 can be done by calculating hj (or Hj,
resp.) and checking if (22) (or (26), resp.) is satisfied for j = 1, . . . ,n. This takes O(n) time. After this, the
reduced problem can be solved using a commercial or free IP solver.

4. Virtual pegging test

The usefulness of the pegging test depends on the gap between the upper and lower bounds. If the gap is not
small enough, the effectiveness of our method is limited, since the size of the problem will not be reduced much
in such a case. In this section, we introduce the virtual pegging test to cope with this problem.

4.1. The principle

In the pegging test, we input a pair of upper and lower bounds �z and z to the pegging algorithm, and partition
the original problem into a fixed part and the remaining reduced problem. Here, upper and lower bounds satisfy
z 6 zH
6 �z: ð27Þ
However, we can try the pegging test using an arbitrary value l within ½z;�z� as a hypothetical lower bound.
Such an l is referred to as a trial value.

Let the set of all the feasible solutions x = (xj) satisfying (2)–(4) be X. Then, if we carry out the pegging test
with �z and l, some xj’s will be fixed either at 0 or 1. But this pegging is not guaranteed to be correct because l is
not necessarily a lower bound. Let the index sets of the variables fixed at 0 (or 1) by the above pegging pro-
cedure be F0(l) (F1(l), resp.). Then, we have the following reduced problem.
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R(l):
Alg

St

St

St
St

St
maximize
Xn

j¼1

pjxj ð28Þ

subject to x 2 X ; ð29Þ
xj ¼ 1; j 2 F 1ðlÞ; ð30Þ
xj ¼ 0; j 2 F 0ðlÞ: ð31Þ
The optimal objective value to this problem will be denoted as zH

l , and is referred to as the realization for the
trial value l. If R(l) is infeasible, we define zH

l :¼ �1. Then, we have

Theorem 3. For an arbitrary trial value l 6 �z and its realization zH

l , the followings are true.

(i) l 6 zH ) zH

l ¼ zH,
(ii) l > zH ) zH

l 6 zH,

(iii) l 6 l0 ) zH

l P zH

l0 ,

(iv) l 6 zH

l ) zH

l ¼ zH.
Proof. (i) If l 6 zw, l is actually a lower bound; thus the pegging test works correctly and finds the optimal
value zw, i.e., zH

l ¼ zH. (ii) Note that for an arbitrary l 6 �z, R(l) is PCKP with the additional constraints
(30) and (31). Then, by definition, the optimal objective values satisfy this relation. (iii) In applying Theorem
1 (or Theorem 2) with the gap of �z� l, we note that the larger the trial value l is (and thus the smaller the gap
is), the more variables are fixed, i.e., for l 6 l 0 we have Fu(l) � Fu(l 0) (u = 0,1). From this, the above relation is
straightforward. (iv) If l > zw, from (ii) we have zH

l 6 zH, and thus l > zH

l . This is a contradiction. So, we have
l 6 zw, and from (i) obtain zH

l ¼ zH. h

As a direct corollary of (iii), if R(l) is infeasible, then R(l 0) is also infeasible for all l 0 P l.

4.2. A virtual pegging algorithm

For an arbitrary trial value l, after carrying out the virtual pegging test and solving the reduced problem
R(l), we obtain the corresponding zH

l . Then, if (iv) is satisfied in Theorem 3, the problem is solved. In addition,
if gap :¼�z� l is small, it is probable that R(l) is a much smaller problem than the original. Thus, in such a case
we obtain an optimal solution by solving this reduced problem. We propose the following algorithm, which
includes measures for the case where (iv) is not satisfied.
orithm Virtual_Pegging_Test

ep 1. l maxf�z� d; zg.
ep 2. Carry out the pegging test with trial value l, solve R(l) and obtain zH

l .
ep 3. If l 6 zH

l , go to Step 5.
ep 4. Update z maxfz; zH

l g and l max{l � d, z}, and go to Step 2.
ep 5. The optimal value is obtained as zH ¼ zH

l .
Here, d is an arbitrary ‘small’ margin. We set the trial value initially at l ¼ �z� d unless this is not smaller
than z. Then, if the optimal value is not found in step 3, the trial value is further lowered by d, and we repeat
Steps 2–4 all over again until an optimal solution is found.
5. Numerical experiments

In this section we evaluate the performance of our approach through a series of numerical experiments. We
implemented the algorithm in C language and conducted some computation on an IBM RS/6000 Model 270
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workstation (CPU: POWER3-II SMP 2way, 375 MHz). The program (including a subprogram to generate
random instances) is available from [24] with some explanatory materials.
5.1. Test problems

The number of items n is set between 1000 and 16,000, and the weights and profits are assumed as the
following.

• Uncorrelated case (UNCOR)

wj: Uniformly random over [1,1000],
pj: Uniformly random over [1, 1000], independent of wj.

• Weakly correlated case (WEAK)
Table
Upper

d

0.1

0.2

0.4

0.8
[wj]: Uniformly random over [1,1000],
[pj]: Uniformly random over [wj,wj +200].
The capacity of the knapsack is fixed at first at c = 250n. This means that without precedence constraints
approximately a half of all the items can be included in the knapsack, since the average weight of items is
approximately 500. The precedence constraints are generated randomly with probability d/(n � 1). Hence,
the average number of precedence constraints is nd/2, where parameter d controls the density of this con-
straints, and we examined the cases of d = 0.1–0.8.
5.2. Upper and lower bounds

Tables 1 and 2 give an overview of the computation of upper and lower bounds for the UNCOR and
WEAK cases, respectively. Here shown are d, n, m, the gap between the Lagrangian upper bound �z and
the 2-opt lower bound z, as well as the computing time in seconds. The column ‘ratio’ shows the percentage
1
and lower bounds (UNCOR)

n m Gap CPU seconds

Average Maximum Minimum Average Maximum Minimum Ratio

1000 55.2 118.3 856 10 0.22 0.37 0.13 0.86
2000 100.3 35.4 65 3 0.70 1.01 0.52 0.73
4000 198.6 37.9 58 18 2.62 3.14 1.91 0.71
8000 402.4 25.6 54 8 8.21 9.69 6.79 0.57

16,000 807.4 31.5 66 16 29.89 36.77 24.57 0.46

1000 107.4 59.5 114 19 0.34 0.19 0.67 0.88
2000 201.2 37.0 63 9 1.00 2.28 0.64 0.82
4000 395.8 47.3 80 17 3.14 5.04 1.99 0.74
8000 800.2 23.7 67 4 11.79 21.16 6.04 0.73

16,000 1609.1 24.5 43 3 40.18 63.18 29.81 0.64

1000 206.2 85.3 189 43 0.61 1.32 0.33 0.93
2000 402.9 129.7 542 4 2.11 4.12 0.86 0.92
4000 807.1 111.3 691 21 8.35 16.82 3.97 0.90
8000 1593.0 160.4 1131 12 24.14 26.68 17.47 0.85

16,000 3210.3 78.6 253 3 82.95 108.95 61.95 0.83

1000 406.0 206.8 618 21 1.46 2.79 0.58 0.97
2000 802.3 349.5 1051 37 6.65 13.68 3.41 0.97
4000 1606.3 349.1 1925 22 26.93 35.52 18.35 0.97
8000 3196.7 227.6 1021 12 76.28 126.77 52.19 0.95

16,000 6402.6 340.9 1036 19 357.58 466.54 235.50 0.95



Table 2
Upper and lower bounds (WEAK)

d n m Gap CPU seconds

Average Maximum Minimum Average Maximum Minimum Ratio

0.1 1000 55.2 21.9 42 7 0.21 0.33 0.13 0.80
2000 100.3 18.2 54 5 0.61 0.94 0.43 0.70
4000 198.6 13.6 41 4 1.89 2.75 1.38 0.65
8000 402.4 36.4 99 3 7.88 10.17 6.50 0.46

16,000 807.4 40.5 107 10 31.57 49.24 24.07 0.39

0.2 1000 107.4 28.7 73 11 0.25 0.39 0.19 0.84
2000 201.2 33.7 103 8 0.92 1.64 0.46 0.79
4000 395.8 20.7 35 6 2.78 4.06 1.68 0.72
8000 800.2 64.9 268 8 11.93 19.33 6.95 0.67

16,000 1609.1 66.7 257 6 36.83 46.81 29.06 0.54

0.4 1000 206.2 36.3 110 11 0.50 1.09 0.23 0.91
2000 402.9 34.0 92 2 1.31 2.55 0.71 0.87
4000 807.1 70.0 271 2 6.40 10.00 2.78 0.87
8000 1593.0 73.6 198 11 22.86 39.52 15.04 0.83

16,000 3210.3 58.2 192 3 75.91 95.95 63.19 0.79

0.8 1000 406.0 54.8 135 18 1.17 1.64 0.43 0.98
2000 802.3 79.2 310 12 4.65 7.38 2.54 0.97
4000 1606.3 116.1 252 5 14.90 25.75 9.98 0.97
8000 3196.7 111.6 360 6 56.85 84.53 36.48 0.94

16,000 6402.6 358.2 914 69 292.16 530.76 136.33 0.93
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of the CPU time spent for the computation of the upper bound. In these tables, each row shows the average,
maximum and minimum of these values over 10 randomly generated instances.

From these tables, we observe the followings:

1. The gap between �z and z usually increases with d, and it is often smaller in WEAK than in UNCOR.
2. Computation time for the upper bound increases with n as well as with d, but it is rather insensitive to the

correlation type of the instances. CPU time to compute the lower bounds also increases with n, but it stays
almost constant with the increase of d or the change of correlation type. As a consequence, with the increase
of d the CPU time to compute the upper bounds becomes relatively time consuming (see the column of
‘ratio’).

5.3. Problem reduction by pegging tests

Tables 3 and 4 summarize the results of computation of the pegging tests. Here the columns PLAIN and
BLOCK show the results of plain and block pegging, respectively. The size of the reduced problem is shown
by n 0 (the number of variables) and m 0 (the number of precedence constraints), and the ratio of reduction is
given by ‘reduc’, which is defined as the ‘geometric mean’ of n 0/n and m 0/m, i.e.,
reduc :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0m0=nm

p
: ð32Þ
Computing time for the pegging tests is negligible; indeed, in all cases tested it took at most 0.03 seconds.
The findings from these tables are as follows

1. The reduced problem is always smaller (although slightly) in the block pegging method than in the plain
pegging.

2. The pegging method becomes less effective as d increases. Also, correlation between weights and profits
makes the pegging less effective.



Table 3
Pegging test (UNCOR)

d n PLAIN BLOCK

n0 m 0 Reduction n 0 m0 Reduction

0.1 1000 162.4 7.2 0.14 161.5 6.2 0.13
2000 145.5 3.9 0.05 144.3 2.7 0.04
4000 305.5 8.9 0.06 304.0 7.4 0.05
8000 421.1 12.0 0.04 417.9 8.7 0.03

16,000 1011.3 27.2 0.05 1003.4 19.1 0.04

0.2 1000 118.9 8.1 0.09 117.0 6.0 0.08
2000 152.2 5.7 0.05 150.7 4.1 0.04
4000 371.8 17.7 0.06 367.5 13.2 0.06
8000 396.5 20.1 0.04 392.6 16.1 0.03

16,000 811.3 38.3 0.03 801.9 28.9 0.03

0.4 1000 167.9 19.4 0.13 163.2 14.4 0.11
2000 436.6 68.8 0.19 422.7 52.4 0.17
4000 715.8 108.8 0.15 693.4 82.7 0.13
8000 1575.1 242.5 0.17 1543.9 205.8 0.16

16,000 2416.2 310.2 0.12 2335.4 217.0 0.10

0.8 1000 357.5 106.2 0.31 336.5 77.8 0.25
2000 915.8 308.8 0.42 872.2 243.3 0.36
4000 1508.4 471.8 0.33 1442.6 383.5 0.29
8000 2715.3 805.2 0.29 2575.7 615.8 0.25

16,000 7186.8 2374.8 0.41 6829.8 1855.2 0.35
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Table 4
Pegging test (WEAK)

d n PLAIN BLOCK

n 0 m0 Reduction n0 m 0 Reduction

0.1 1000 210.0 7.6 0.17 207.4 5.0 0.14
2000 350.4 10.4 0.13 348.4 8.4 0.12
4000 536.2 12.0 0.09 533.1 8.9 0.08
8000 2454.6 89.8 0.26 2434.3 68.5 0.23

16,000 5680.5 211.1 0.30 5629.1 158.1 0.26

0.2 1000 270.2 19.3 0.22 263.4 12.2 0.17
2000 604.0 38.3 0.24 594.8 28.4 0.20
4000 816.2 43.7 0.15 805.0 31.6 0.13
8000 3478.3 283.0 0.39 3428.6 228.4 0.35

16,000 7282.3 592.5 0.41 7177.4 479.1 0.37

0.4 1000 328.5 46.9 0.27 316.5 33.1 0.23
2000 613.5 85.0 0.25 592.4 60.5 0.21
4000 1709.0 292.0 0.39 1666.7 240.6 0.35
8000 4372.2 714.0 0.49 4235.1 547.7 0.43

16,000 7124.0 1143.1 0.40 6898.1 873.3 0.34

0.8 1000 464.2 140.5 0.40 433.0 99.4 0.33
2000 1017.1 327.0 0.45 963.7 250.8 0.39
4000 2585.4 935.7 0.61 2473.7 764.5 0.54
8000 4619.7 1628.9 0.54 4424.0 1337.2 0.48

16,000 14,289.6 5414.3 0.87 13,838.7 4729.6 0.80
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The second observation above may better be explained in terms of the close relation between the average
gap (in Tables 1 and 2) and the ineffectiveness of pegging measured by ‘reduc’, which can be represented as the
following regression functions:
Table
Exact

d

0.1

0.2

0.4

0.8

Table
Exact

d

0.1

0.2

0.4

0.8
UNCOR : reduc ¼ 0:015þ 0:00097 � gap ðR2 ¼ 0:970Þ
WEAK : reduc ¼ 0:153þ 0:00230 � gap ðR2 ¼ 0:815Þ
For example, if we have gap = 100, the expected ratio of reduction would be 0.11 in UNCOR, and 0.38 in
WEAK.
5
solutions by NUOPT (UNCOR)

n #sol CPU seconds BBN

Average Maximum Minimum Average Maximum Minimum

1000 10 6.92 14.26 0.63 1185.7 6688 103
2000 10 22.60 80.03 0.65 3067.5 11,966 14
4000 7 75.58 180.99 14.84 5196.1 12,888 653
8000 7 88.47 243.79 12.46 1601.2 5206 27

16,000 5 425.29 1011.85 29.32 5101.2 16,138 24

1000 10 8.44 19.84 0.46 1966.1 4529 54
2000 10 18.47 71.29 2.94 2196.6 9426 319
4000 6 43.17 71.54 22.10 1681.8 3878 392
8000 7 200.10 573.94 38.60 4086.0 18,629 230

16,000 3 284.11 631.02 52.82 998.3 2364 18

1000 10 11.41 40.53 1.37 1966.5 7303 251
2000 10 27.91 89.07 3.10 2116.4 8330 144
4000 6 82.81 159.76 10.73 2247.5 4318 280
8000 6 426.55 1853.22 15.72 23,800.8 129,326 55

16,000 3 437.57 526.79 384.81 1210.7 1867 672

1000 10 16.47 34.96 2.62 1930.0 3521 302
2000 10 91.52 176.58 4.30 3520.0 6310 167
4000 7 142.64 300.57 52.84 1984.4 3680 673
8000 3 180.13 266.85 27.68 1248.0 2611 38

16,000 3 549.27 879.44 190.37 1475.3 2869 110

6
solutions by NUOPT (WEAK)

n #sol CPU seconds BBN

Average Maximum Minimum Average Maximum Minimum

1000 10 46.87 207.20 1.99 27,310.9 117,046 775
2000 7 678.33 2739.03 1.42 255,172.3 1,055,088 40
4000 5 757.12 1832.44 15.78 143,128.8 373,478 366

1000 10 45.06 172.12 1.19 24,920.5 101,854 210
2000 7 325.08 937.88 8.95 106,151.4 321,047 605
4000 3 6.95 8.39 4.23 51.7 84 17

1000 10 37.89 199.45 3.63 16,031.0 103,943 1116
2000 10 338.39 1831.27 2.66 117,147.8 692,331 94
4000 2 348.10 395.39 300.81 40,286.5 44,968 35,605

1000 10 36.16 162.49 0.44 11,402.0 71,155 185
2000 8 276.46 1039.92 7.13 64,435.5 271,908 360
4000 5 311.57 840.26 68.72 33,628.2 124,502 1085
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5.4. Exact solutions

We solve the problems to optimality using NUOPT [20] directly, as well as by the block pegging (referred to
as BLOCK) and the virtual pegging methods (VIRTUAL). NUOPT is a commercial MP solver developed by
a Japanese vendor, and is claimed to be competitive to such popular solvers as LINDO or CPLEX. We use
NUOPT to solve the reduced problems in BLOCK and VIRTUAL as well. Tables 5 and 6 show the results of
NUOPT, Tables 7 and 8 are those of BLOCK, and Tables 9 and 10 summarize the results of VIRTUAL, all
for UNCOR and WEAK cases.

For each value of d and n, the same 10 instances were solved as in Tables 1 and 2 with the limit time of 3600
CPU seconds. Here #sol denotes the number of solved instances within this time limit, and #rep in Tables 9
and 10 is the number of repetitions of Steps 2–4 in Virtual_Pegging_Test. In these tables ‘CPU seconds’ is the
sum of the computation time for the upper and lower bounds, pegging test, and the time to solve the reduced
problem using NUOPT. Also ‘BBN’ is the number of the branch and bound nodes generated by NUOPT to
solve respective problems. The average, maximum and minimum of these values over the solved (#sol)
instances are given in these tables.

In VIRTUAL we fixed d at d = 10, since the average of the gap �z� zH was approximately 10 in the com-
putation of BLOCK. We observe the followings

1. BLOCK often solves instances that NUOPT cannot solve, and VIRTUAL sometimes solves instances that
BLOCK cannot. The converse is very rare. In our experiments, NUOPT was able to solve only one instance
(WEAK, d = 0.2, n = 2000) that BLOCK could not solve. This instance was solved by VIRTUAL.

2. In UNCOR cases, NUOPT frequently fails to solve instances with n P 4000. Contrary, for n 6 8000 almost
all instances were solved either by BLOCK or VIRTUAL. Even if NUOPT solves these instances, it is usu-
ally time consuming.

3. Correlation between weights and profits makes problems much harder. In WEAK, NUOPT sometimes fails
for problems with n = 2000. With VIRTUAL we are able to solve these problems, but compared to the
UNCOR instances, it takes much longer CPU time.
Table 7
Exact solutions by BLOCK (UNCOR)

d n #sol CPU seconds BBN

Average Maximum Minimum Average Maximum Minimum

0.1 1000 10 0.72 2.53 0.19 662.5 2555 92
2000 10 1.38 3.33 0.64 1183.4 2953 14
4000 10 9.18 19.83 2.85 8999.8 30,966 612
8000 10 292.40 2753.70 7.50 278,314.1 2,622,402 29

16,000 8 244.28 1223.88 25.57 217,718.9 1,128,487 20

0.2 1000 10 0.84 1.78 0.38 866.0 2007 54
2000 10 1.74 4.27 0.69 1492.6 2491 181
4000 10 17.62 102.24 3.66 22,353.2 169,373 1015
8000 10 254.35 2366.15 7.39 480,265.1 4,744,547 239

16,000 8 240.36 827.42 33.09 184,046.6 539,396 18

0.4 1000 10 1.41 3.21 0.51 906.2 2627 244
2000 10 11.25 49.88 1.30 1530.9 8100 22
4000 9 11.39 31.84 4.42 2228.0 4714 270
8000 8 67.38 238.14 24.69 280,91.9 137,069 54

16,000 6 382.49 1292.05 111.70 551,550.0 2,744,246 667

0.8 1000 10 4.77 24.52 1.09 1379.6 4489 302
2000 10 43.16 145.19 3.83 2611.3 6525 167
4000 10 68.44 165.79 27.89 4269.1 13,730 674
8000 6 138.74 340.02 53.82 15,895.3 72,327 38

16,000 8 784.37 2782.35 290.37 48,035.8 296,551 92



Table 8
Exact solutions by BLOCK (WEAK)

d n #sol CPU seconds BBN

Average Maximum Minimum Average Maximum Minimum

0.1 1000 10 13.49 88.28 0.80 20,105.0 112,990 783
2000 8 235.46 978.73 0.71 467,400.3 1,972,277 40
4000 8 370.14 1498.35 1.66 510,953.8 2,635,522 343

0.2 1000 10 14.11 61.45 0.57 23,210.9 99,723 210
2000 8 261.94 1589.88 0.69 323,718.1 1,961,311 615
4000 5 674.36 1899.56 1.91 648,243.0 1,690,114 27

0.4 1000 10 10.06 44.83 1.67 16,158.7 99,723 1265
2000 10 112.29 516.55 1.84 118,568.5 692,357 99
4000 3 301.02 843.68 2.78 763,563.0 2,249,335 8407

0.8 1000 10 15.29 66.83 1.18 11,355.2 68,881 1
2000 10 131.78 1008.87 9.36 44,449.5 272,364 378
4000 6 437.26 1228.72 9.98 397,797.8 2,178,465 1159

Table 9
Exact solutions by VIRTUAL (UNCOR)

d n #sol #rep CPU seconds BBN

Average Maximum Minimum Average Maximum Minimum

0.1 1000 10 1.5 1.04 1.56 0.11 229.5 484 31
2000 10 1.0 0.88 1.95 0.50 1339.1 6073 14
4000 10 1.0 4.36 11.15 1.83 6475.4 26,673 417
8000 10 1.0 130.44 1216.76 4.07 258,468.1 2,491,418 29

16,000 8 1.0 151.18 737.19 10.80 215,314.9 1,135,948 22

0.2 1000 10 1.4 0.47 0.88 0.20 286.7 656 54
2000 10 1.2 1.56 2.48 0.62 1117.3 5369 172
4000 10 1.0 4.30 7.79 2.22 5212.5 16,227 542
8000 10 1.0 210.14 1992.21 5.54 47,9791.7 4,746,000 230

16,000 8 1.0 129.66 313.95 20.53 169,248.8 483,664 18

0.4 1000 10 1.4 0.65 1.46 0.32 289.8 649 78
2000 10 3.6 18.26 27.55 0.82 870.4 4244 128
4000 10 1.0 8.46 17.18 3.43 1815.1 3614 162
8000 10 3.8 293.86 788.74 17.50 275,61.6 147,355 54

16,000 7 1.9 438.59 2189.79 56.22 594,641.6 3,509,838 58

0.8 1000 10 5.0 3.53 5.65 0.64 313.3 946 25
2000 10 4.0 11.72 23.79 3.46 608.9 1204 350
4000 10 4.0 68.64 85.94 19.30 2471.7 12,999 22
8000 9 1.1 77.25 120.58 50.89 8280.4 25,000 38

16,000 10 1.9 608.24 848.37 241.89 123,548.5 470,867 1228
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One reason of the poor performance in WEAK instances is that we are using NUOPT to solve the reduced
problem. Even for standard KPs the correlated instances are often hard to solve by general purpose MP
solvers.

5.5. Sensitivity analysis

Table 11 gives the result of a sensitivity analysis with respect to the knapsack capacity. We fix d = 0.2, and
consider the UNCOR case. We compare the CPU time in seconds, with average, maximum and minimum over



Table 10
Exact solutions by VIRTUAL (WEAK)

d n #sol #rep CPU seconds BBN

Average Maximum Minimum Average Maximum Minimum

0.1 1000 10 1.0 9.52 63.69 0.55 23,096.1 147,336 783
2000 10 1.0 591.24 1282.07 0.77 288,462.3 1,067,322 40
4000 8 1.0 396.01 1912.41 1.74 585,500.0 2,789,513 348

0.2 1000 10 1.0 9.87 39.65 0.44 25,249.7 98,486 176
2000 9 1.0 349.69 1716.75 0.89 698,107.2 3,673,265 596
4000 6 1.0 827.03 2765.84 1.99 1,113,609.0 3,692,637 25

0.4 1000 10 1.0 6.79 43.14 0.99 15,299.0 100,793 1151
2000 10 1.0 63.63 317.41 1.58 130,041.8 692,126 96
4000 5 1.0 1080.53 2532.03 11.71 1,382,056.0 3,113,746 318

0.8 1000 10 1.0 4.52 30.14 0.98 7435.6 65,397 1
2000 10 1.2 29.97 163.93 7.07 420,83.8 270,575 380
4000 8 1.1 1065.24 3156.37 11.91 1,322,136.0 4,131,502 1817

Table 11
Sensitivity of the CPU time to the knapsack capacity

n c = 125n c = 250n c = 375n

Minimum Average Maximum Minimum Average Maximum Minimum Average Maximum

1000 0.24 0.70 1.35 0.38 0.85 1.83 0.12 0.39 1.34
2000 0.83 1.70 3.54 0.70 1.95 4.17 0.36 0.89 1.35
4000 2.92 5.10 8.47 3.61 18.31 101.76 1.70 3.49 7.27
8000 13.05 21.53 44.92 7.39 280.67 2452.00 7.58 15.99 59.46

Table 12
CPU seconds for strongly correlated instances

n m NUOPT BLOCK

CPU #sol gap n0 m0 Reduction CPU #sol

100 9.1 93.3 9 48.9 58.3 3.2 45.0 89.2 9
200 21.1 455.5 5 55.1 119.5 8.5 47.4 182.5 6
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10 random instances shown in the table for the cases of c = 125n, c = 250n and c = 375n. These represent
approximately 1/4, 1/2 and 3/4 of the total weight of items.

From the table we see that PCKP is most difficult when the knapsack capacity is near to 1/2 of the total
weight of items, while the problem is easier to solve for the knapsack capacity far apart from this value.

Finally, we solved some ‘strongly correlated’ instances, where wj is uniformly distributed over [1, 1000], but
pj is related to wj by
pj ¼ wj þ 200:
We show a result in Table 12. As in ordinary knapsack problems, this type of PCKP is quite difficult to solve.
This is because the weakness of the solvers to solve strongly correlated knapsack problems. We were unable to
solve PCKPs with n P 400 by any of the methods considered in our work.

6. Conclusion

In this paper, we have shown that the pegging test for the standard 0–1 KPs can be extended to PCKPs by
introducing the Lagrangian relaxation first to the precedence constraints. In addition, by proposing the block
and virtual pegging tests, we were able to solve PCKPs with up to 16,000 items.
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However, the experiments in this paper were limited to PCKPs with ‘sparse’ precedence relations in the
sense that jEj = O(n). Also, these relations were randomly picked up from all the possible pairs. For instances
with ‘dense’ precedence relations such as j Ej = O(n2), or with E generated from some other random mecha-
nisms, the results may be quite different. These ‘instance characteristics’ of the algorithm are left for future
investigations.

To solve yet larger problems exactly we need to explore the methods to obtain more tight upper and lower
bounds, as well as the specialized algorithms to solve the reduced problem more efficiently. Analysis of poly-
hedral structure of PCKP [4,3] may prove useful in this direction.
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