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Listing all the minimum spanning trees in an undirected graph

Takeo Yamada*, Seiji Kataoka and Kohtaro Watanabe

Department of Computer Science, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan

(Received 05 December 2008; revised version received 06 April 2009; second revision received 15 July 2009;
accepted 06 September 2009 )

Efficient polynomial time algorithms are well known for the minimum spanning tree problem. However,
given an undirected graph with integer edge weights, minimum spanning trees may not be unique. In
this article, we present an algorithm that lists all the minimum spanning trees included in the graph. The
computational complexity of the algorithm is O(N(mn + n2 log n)) in time and O(m) in space, where
n, m and N stand for the number of nodes, edges and minimum spanning trees, respectively. Next, we
explore some properties of cut-sets, and based on these we construct an improved algorithm, which runs in
O(Nm log n) time and O(m) space. These algorithms are implemented in C language, and some numerical
experiments are conducted for planar as well as complete graphs with random edge weights.
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1. Introduction

Let G = (V , E) be an undirected graph with vertex set V = {v1, . . . , vn} and edge set E =
{e1, . . . , em} ⊆ V × V . Each edge e ∈ E is associated with an integer weight w(e) > 0. We
assume that G is connected and simple (i.e. there exist neither self-loops nor multiple edges).
A forest is an acyclic subgraph of G, and a tree is a connected forest. For a tree T , its weight
w(T ) is defined as the sum of the weights of constituent edges. A tree is a spanning tree if it
covers all the nodes of G, and a minimum spanning tree is a spanning tree with minimum weight.
Throughout the paper, this weight is denoted as z�, and by MST we denote an arbitrary spanning
tree of this weight. (Later we consider spanning trees in some limited framework, where we
might have minimum spanning trees with weights larger than z�. Such a tree is not an MST in our
terminology.) Efficient algorithms are well known to find an MST in an undirected graph [1,6,10].
However, there may be more than one MST, and we are concerned with the following problem.

P : List all the MSTs in graph G.
Related to this problem are the algorithms to list all the spanning trees [5,9,11], do the same in

non-decreasing order of cost [3,13] and find K-shortest spanning trees in a graph [2,8]. Indeed,
P may be solved by finding all the spanning trees, or more preferably by applying a K-shortest
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spanning tree algorithm with sufficiently large K and truncating its execution as soon as we have
a spanning tree of weight larger than z�. Unfortunately, the latter requires O(K) memory space
which is infeasible for problems with many MSTs. In this article, we give an algorithm, and its
refinement, that lists all, and only, MSTs. These algorithms require O(m) space.

2. A prototype enumeration algorithm

Let T = {e1, . . . , en−1} be an arbitrary MST in G, which can be obtained by any standard MST
algorithms. Then, following the general scheme for solving enumeration problems in combina-
torial optimization framework [4,7], we make use of this MST to divide P into the following set
of mutually disjoint subproblems (i = 1, . . . , n − 1).

P({e1, . . . , ei−1}, {ei}) : List all the MSTs that contain e1, . . . , ei−1, but do not contain ei .
More generally, for a forest F = {e1, . . . , ek} in G and a set of edges R ⊆ E that is disjoint

with F (i.e. F ∩ R = ∅), a spanning tree T is (F, R)-admissible if it contains all edges of F , but
does not contain those of R. That is, T is (F, R)-admissible if and only if F ⊆ T and R ∩ T = ∅.
Here we use T to represent a spanning tree, as well as the set of edges included in that tree. F

and R are the sets of fixed and restricted edges, respectively, and we pose the following problem.
P(F, R) : List all the MSTs which are (F, R)-admissible.
Clearly, P is identical to P(∅, ∅). We note that an (F, R)-admissible spanning tree of the

minimum weight can be easily obtained by slightly modifying the standard MST algorithms. Let
An_MST(F, R) denote the algorithm to do this, that is it accepts F and R as inputs and returns an
(F, R)-admissible spanning tree T �(F, R) of the minimum weight z�(F, R). Kruskal’s or Prim’s
algorithm [6,10] can be easily tailored for this purpose. If no (F, R)-admissible spanning tree
exists, we take the convention of writing z�(F, R) = ∞.

Then, if z�(F, R) > z�, no MST can be (F, R)-admissible, and hence we terminate the sub-
problem P(F, R). Otherwise, we output T �(F, R) as an MST, and make use of this tree to
introduce a set of subproblems in the following way. Let k := |F | and the tree be represented as
T �(F, R) = F ∪ {ek+1, . . . , en−1}. For i = k + 1, . . . , n − 1, we define

Fi := F ∪ {ek+1, . . . , ei−1}, Ri := R ∪ {ei}. (1)

Here, in case i = k + 1, we interpret {ek+1, . . . , ei−1} = ∅ and Fi = F . Then, P(F, R) is divided
into a set of mutually disjoint subproblems P(Fi, Ri) (i = k + 1, . . . , n − 1), and the problem is
solved if we solve all these subproblems. Thus, a prototype algorithm can be constructed in the
divide and conquer paradigm [12] as follows.

Algorithm All_MST(F,R)

Comment: F is a forest in G, R ⊆ E and F ∩ R = ∅.

Step 1: Apply An_MST(F, R) to find T �(F, R) and z�(F, R).
Step 2: If z�(F, R) > z�, return.
Step 3: Output T �(F, R), and for i = k + 1, . . . , n − 1 do

Define (Fi, Ri) by (1), and call All_MST(Fi, Ri).
endfor.

Example 2.1 Consider the graph G of Figure 1, where edge weights are shown in italic. We start
from P0 := P(∅, ∅), and obtain an MST with z� = 8 (Step 1). From P0, 5 children are generated
(Step 3) as shown in Figure 2, and in total we obtain 6 MSTs after examining 17 subproblems. Due
to the recursive nature of the algorithm, the subproblems are visited and numbered in a depth-first
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Figure 1. Graph for Example 1.

Figure 2. Behaviour of All_MST.

fashion. Here, the subproblems where MSTs are found are shaded with the corresponding MST
shown at each shoulder. Details of the subproblems are summarized in Table 1. Here, in each row
we show (F, R) that defines subproblem Pi , its parent, an (F, R)-admissible minimum spanning
tree (if one exists) and the corresponding weight z�(F, R) of that tree. Underlined edges represent
the set of newly fixed (resp. restricted) edges at each subproblem, which is denoted as �F (resp.

Table 1. Subproblems generated from All_MST.

Subproblems Parent F R MST z�(F, R)

P0 – ∅ ∅ e2, e1, e4, e7, e8 8
P1 P0 ∅ e2 – 9
P2 P0 e2 e1 [e2], e5, e4, e7, e8 8
P3 P2 e2 e1, e5 [e2], e6, e7, e4, e9 8
P4 P3 e2 e1, e5, e6 – 9
P5 P3 e2, e6 e1, e5, e7 – 10
P6 P3 e2, e6, e7 e1, e5, e4 – 10
P7 P3 e2, e6, e7, e4 e1, e5, e9 [e2, e6, e7, e4], e8 8
P8 P7 e2, e6, e7, 44 e1, e5, e9, e8 – ∞
P9 P2 e2, e5 e1, e4 – 10
P10 P2 e2, e5, e4 e1, e7 – 9
P11 P2 e2, e5, e4, e7 e1, e8 [e2, e5, e4, e7], e9 8
P12 P11 e2, e5, e4, e7 e1, e8, e9 – ∞
P13 P0 e2, e1 e4 – 9
P14 P0 e2, e1, e4 e7 – 9
P15 P0 e2, e1, e4, e7 e8 [e2, e1, e4, e7], e9 8
P16 P15 e2, e1, e4, e7 e8, e9 – ∞
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�R) for later use. In the column ‘MST’, edges within braces are the fixed edges, and hyphen(-)
shows that the subproblem is terminated because z�(F, R) > z�.

The computational complexity of the above algorithm can be evaluated as follows. Let N

denote the number of MSTs included in G, and TMST(n, m) be the time required to solve an MST
problem for a graph with n nodes and m edges. Note that each subproblem, including an MST,
produces at most n − 1 children. So the total number of subproblems generated in All_MST is
at most Nn − N + 1 ≈ Nn. In each subproblem, we solve an MST problem, which requires
O(TMST(n, m)) time. Thus, the total time complexity is O(NnTMST(n, m)).

To access the space complexity, consider the tree of subproblems as shown in Figure 2. We
note that the maximum height of the tree is at most m, since at each branch at least one edge
is either fixed or restricted. While solving P(F, R), we only need to keep the differential infor-
mation (�F ′, �R′) in memory for all ancestors P(F ′, R′) of P(F, R). From these incremental
information, we can reconstruct (F, R), and to keep these in memory O(m) space suffices. Thus,
we have the following.

Theorem 2.2 The time and space complexities of All_MST are O(NnTMST (n, m)) and O(m),

respectively.

Remark 2.3 A simple implementation of Kruskal’s algorithm [6] runs in TMST(n, m) = O(mn)

time, but by using sophisticated data structure such as Fibonacci heap, this can be improved to
TMST(n, m) = O(m + n log n) [1]. Therefore, the time complexity of All_MST is

O(N(mn + n2 log n)). (2)

3. A cut-set-based algorithm

Let T be an MST of G, and e an arbitrary edge of T . Deleting e from T divides the tree into
two connected components with vertexes sets, say V1 and V2. We introduce the cut-set induced
by e ∈ T as the set of edges with one endpoint in V1 and the other in V2. If we define this as
Cut(e) := {e′ ∈ E | e′ ∈ (V1 × V2) ∪ (V2 × V1)}, the following Proposition is clear from the ‘cut
optimality condition’ [1, Theorem 13.1] for MST.

Proposition 3.1 Let T be an MST and e ∈ T . Then, for an arbitrary edge e′ ∈ Cut(e),

w(e′) ≥ w(e). (3)

That is, e ∈ T is an edge of the minimum weight in Cut(e). For a pair of edges e ∈ T and
e′ ∈ Cut(e)\{e}, T ∪ {e′}\{e} defines another spanning tree, which is denoted as T ∪ e′\e for
simplicity. Let G(e) denote the graph obtained from G by deleting e. We then have the following.

Theorem 3.2 Let T be an MST, e ∈ T and e′ �= e be second minimum in weight in Cut(e).
Then, T ′ := T ∪ e′\e is a minimum spanning tree in G(e).

Proof Suppose that T ′ is not a minimum spanning tree in G(e). Then, by the ‘path optimality
condition’[1, Theorem 13.3] there exists a pair of edges c /∈ T ′ andd ∈ T ′ such that (1)T ′′ := T ′ ∪
c\d is a spanning tree and (2) w(c) < w(d). We note that c ∈ Cut(e), otherwise T̃ := T ∪ c\d is
a spanning tree with w(T̃ ) < z�, contradicting that T is an MST. Thus, we have

w(e) ≤ w(e′) ≤ w(c) < w(d). (4)
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Let the cycles included in T � ∪ {e′}, T � ∪ {c} and T ′ ∪ {c} be C0, C1 and C2, respectively. Since
C2 = C0 ⊕ C1 (in Boolean sense) and d ∈ C2, we have d ∈ C0 or d ∈ C1. Define

T̂ :=
{

T � ∪ e′\d if d ∈ C0,

T � ∪ c\d if d ∈ C1.
(5)

Then, T̂ is a spanning tree with w(T̂ ) < z�, which is a contradiction. �

The following Corollaries are easily proved.

Corollary 3.3 Let T be an MST, e ∈ T and e′ �= e be second minimum in weight in Cut(e). If
w(e) = w(e′), then T ∪ e′\e is an MST; otherwise, no MST exists in G(e).

Corollary 3.4 If all the edges of G are of distinct weights, then MST is unique.

Let T be an MST and e ∈ T . We call ẽ ∈ Cut(e) a substitute of e if ẽ �= e and w(ẽ) = w(e).
S(e) stands for the set of all substitutes of e, that is,

S(e) := {ẽ ∈ Cut(e)|ẽ �= e, w(ẽ) = w(e)}. (6)

On the basis of the above theorem, we can modify All_MST in the following way. At each
subproblem, in addition to the pair of sets (F, R) representing the fixed and restricted edges, we
assume that an (F, R)-admissible MST exists. Let this tree be T . In the following algorithm, in the
subproblem P(F, R), for each ei ∈ T \F , we look for a substitute ẽi ∈ S(e). If this is found, we
obtain T ∪ ẽi\ei as a new MST, and use this to generate a sub-subproblem. Then, the algorithm
is described as follows.

Algorithm All_MST1(F, R, T )

Comment: T is an (F, R)-admissible MST, which is written as T = F ∪ {ek+1, . . . , en−1}, with
F = {e1, . . . , ek}.
Step 1: For i = k + 1, . . . , n − 1, do the following:

• Find the cut-set Cut(ei).
• Find, if one exists, a substitute ẽi ∈ S(ei).

Step 2: For i = k + 1, . . . , n − 1, if ẽi exists do the following:
• Set Ti := T ∪ ẽi \ ei and output Ti . {Comment: A new MST is found}
• Set Fi := F ∪ {ek+1, . . . , ei−1} and Ri := R ∪ {ei}.
• Call All_MST1(Fi, Ri, Ti) recursively.

Example 3.5 For the graph of Figure 1, Figure 3 shows the behaviour of All_MST1, where
details of the generated subproblems are summarized in Table 2. In addition to the information
given in Table 1, here is a substitute for the newly restricted edges (�R) in each subproblem.
In this algorithm, each subproblem generated includes an (F, R)-admissible MST as shown in
Figure 3, and newly fixed edges (�F) are underlined in Table 2.

For the computational complexity of this algorithm, we have the following.

Theorem 3.6 The running time of All_MST1 is O(Nmn).

Proof Note that Cut(ei) can be found in O(m) time. At each subproblem, this is repeated at most
n times. �
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Figure 3. Behaviours of All_MST1.

Table 2. Subproblems generated for the graph of Figure 1.

Subproblems Parent F R MST Substitute

P0 – ∅ ∅ e2, e1, e4, e7, e8 –
P1 P0 e2 e1 [e2], e5, e4, e7, e8 e5

P2 P1 e2 e1, e5 [e2], e6, e4, e7, e8 e6

P3 P2 e2, e6, e4, e7 e1, e5, e8 [e2, e6, e4, e7], e9 e9

P4 P1 e2, e5, e4, e7 e1, e8 [e2, e5, e4, e7], e9 e9

P5 P0 e2, e1, e4, e7 e8 [e2, e1, e4, e7], e9 e9

4. A further improvement

In the previous section, it took O(m) time, in the worst case, to find a substitute ẽi for each ei ∈ T .
This computation was carried out for each ei from scratch, and the computation of all substitutes
took O(mn) time. In this section, we present an algorithm that finds ẽi one-by-one, from the
reduced set of possible cut-set edges for ei , and after completing step i this information is carried
on to the next step. We try to make the size of this set as small as possible, and as a result, in
total we obtain the set of all substitutes {ẽi | ei ∈ T \F } in O(m log n) time, instead of O(mn) in
All_MST1.

To accomplish this, at each subproblem P(F, R) with an (F, R)-admissible MST T , we renum-
ber vertexes in postorder fashion [12] as we traverse T from an arbitrary ‘root’ vertex. Let the
vertexes thus renumbered be {vi |i = 1, . . . , n}. Then, T is a tree rooted at vn, and by ei we
denote the tree edge connecting vi to its parent vertex. (See Figure 4, where T is shown in bold).
Associated with vi is an interval [σ i, σ i], which represents the set of descendants of this vertex,
that is,

j ∈ [σ i, σ i] ⇔ vj is a descendant of vi in tree T rooted at vn. (7)

Let Ei := {(vi, vj ) ∈ E|(vi, vj ) /∈ T } be a set of non-tree edges incident on node vi , and Q be
a set of elements of the form (w, v, v′) ∈ Z × V × V . Here, (w, v, v′) ∈ Q means that the edge
e = (v, v′) ∈ E has weight w(e) = w, and is a candidate of a cut-set edge at this, and subsequent,
stage. We call Q the set of quasi-cuts, and assume that it is lexicographically ordered with respect
to w and v. For ei ∈ T \F , we make use of Q to find its substitute ẽi and update it for the next i

in the following way.
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Figure 4. Graph for Example 3.

Algorithm Substitute(F, R, T )

Step 1: Set Q := ∅.
Step 2: For i = 1 to n − 1 do the following.

(1) For ∀e = (vi, vj ) ∈ Ei \ R do either of the following.
a) If j < σ i , {Comment: Reverse the direction.}

• If (w(e), j, i) ∈ Q, delete it from Q.
• Insert (w(e), i, j) into Q.

(b) If j ∈ [σ i, σ i],
• If (w(e), j, i) ∈ Q, delete it from Q.

(c) If j > σ i ,
• Insert (w(e), i, j) into Q.

(2) If ei /∈ F do the following.
(a) Find (w, i ′, j ′) ∈ Q such that w = w(ei) and i ′ ∈ [σ i, σ i]
(b) If such an (w, i ′, j ′) is found with j ′ ∈ [σ i, σ i],

• Delete (w, i ′, j ′) from Q, and go to (2)-(a).
(c) If such an (w, i ′, j ′) is found with j ′ /∈ [σ i, σ i],

• Set ẽi := (vi ′ , vj ′
). {Comment: Substitute for ei found.}

In Step 2-(1), we update Q by including the edges of Ei\R as a candidate of cut-set edges
for ei and subsequent tree edges. Specifically, in Step 2-(1)-(c) edge (vi, vj ) is included in Q if
this is an edge from vi to vj with j > i. On the other hand, edges from ei to its descendants are
deleted [Step 2-(1)-(b)], since from now on these can no longer be a cut-set edge. If we have an
edge coming into vi from a previously found vertex vj , the direction is reversed [Step 2-(1)-(a)].

Next, in Step 2-(2) we look for a substitute ẽi of ei included in Q. If we have an edge with the
weight identical to w(ei) and emerging from a vertex within the interval [σ i, σ i] [Step 2-(2)-(c)],
this is a substitute for ei , and thus we are done. If this is an edge from the above interval to the
same interval, we delete this edge from Q, and repeat Step 2-(2) again.

Example 4.1 Consider the graph of Figure 4 with an MST T shown in thick lines. Nodes and
edges are numbered in the postorder fashion as traversed along T from node v10. Table 3 shows
w(ei), [σ i, σ i] and Q at each stage. The elements superscribed with ◦, × and ! show, respectively,
the newly found, deleted and substitute for ei . The elements associated with † shows that the edge
direction is reversed here.

Let All_MST2 be the algorithm obtained from All_MST1 by replacing Step 1 as follows.
Step 1†: Execute Substitute(F, R, T ).
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Table 3. Behaviour of Substitute for the graph of Figure 4.

i w(ei ) [σ i , σ i ] Q i w(ei) [σ i , σ i ] Q

1 3 [1,1] (12:1, 3)◦ 6 10 [5,6] (10:4, 10)
(12:1, 10)◦ (10:5, 3)!

(10:5, 8)
2 12 [1,2] (12:1, 3)! (10:6,3)†

(12:1,10) (12:1, 10)
(12:2, 8)◦ (12:2, 8)

(12:3, 1)
3 7 [3,3] (10:3, 5)◦ (13:5, 7)

(10:3, 6)◦
(12:1, 10) 7 10 [3,7] (10:4, 10)!
(12:2, 8) (10:5, 3)×
(12:3, 1)† (10:5, 8)

(10:6, 3)×
4 1 [3,4] (10:3, 5) (12:1, 10)

(10:3, 6) (12:2, 8)
(10:4,10)◦ (12:3, 1)
(12:1,10)
(12:2, 8) 8 6 [8,8] (10:4,10)
(12:3, 1) (10:8, 5)†

(12:1,10)
5 3 [5,5] (10:3, 6) (12:3, 1)

(10:4,10) (12:8, 2)†

(10:5, 3)†

(10:5, 8)◦ 9 7 [3,9] (10:4,10)
(12:1,10) (10:8, 5)
(12:2, 8) (12:1, 10)
(12:3, 1) (12:3, 1)
(13:5, 7)◦ (12:8, 2)

Computational complexity ofAll_MST2 can be evaluated as follows. First, note that Q includes
at most m elements, and for each non-tree edges at most two Inserts and two Deletes are executed.
For each tree edge at most one Find is executed. Since Q is an ordered set, each of Insert, Delete
and Find can be done in O(log m) time, provided that Q is organized as an appropriate binary
tree (such as the Adelson-Velskii and Landis tree (AVL-tree) [12]). Thus, in total Substitutes can
be done in O(m log m) = O(m log n) time. All other computations, such as traversing G along T ,
renumbering V in postorder fashion and finding intervals [σ i, σ i], can be accomplished in O(m)

time. Thus, we have the following.

Theorem 4.2 The running time of All_MST2 is O(Nm log n).

5. Numerical experiments

We have implementedAll_MST andAll_MST1 in C language and conducted a series of numerical
experiments on an IBM RS/6000 44P MODEL 270 workstation (375 MHz). Throughout the
experiments, All_MST and All_MST1 found the same number of MSTs.

5.1 Complete graphs with constant edge weights

First, we consider the complete graph Kn with edge weights fixed at w(e) ≡ 1 for all e ∈ E.
In this case, all the spanning trees are MSTs, and the total number of spanning trees can be
shown [9] to be

N = nn−2. (8)
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Table 4. Result of experiments (complete graphs, constant edge weights).

All−MST All−MST1

Graph N #sub CPU CPU

K3 3 6 0.00 0.00
K4 16 29 0.00 0.00
K5 125 212 0.00 0.00
K6 1296 2117 0.02 0.01
K7 16,807 26,830 0.22 0.08
K8 262,144 412,015 3.60 1.35
K9 4,782,969 7,433,032 60.74 26.99
K10 100,000,000 154,076,201 1694.27 616.10

Figure 5. Planar graph P100×260.

Table 4 gives the result of experiments for Kn. The number of spanning trees (N ), the number of
generated subproblems (#sub) and CPU time in seconds are shown. BothAll_MST andAll_MST1

compute Nn correctly for n ≤ 10, and All_MST1 is approximately 2.5 times faster than All_MST.

5.2 Planar graphs with random edge weights

Let Pn×m be a planar graph with n nodes and m edges (See Figure 5 for P100×260), and the edge
weights are both randomly and uniformly distributed over [1, 10L] (L = 2, 3).

Table 5 summarizes the result of the experiments for these graphs. Each row is the average of
10 independent runs. In this case, All_MST1 runs 30 – 60 times faster than All_MST. The number
of MSTs is much smaller in the case where edge weights are distributed over [1, 1000] (L = 3)

than in the case L = 2. This is explained as follows. In the latter case, the chance of having edges
of identical weights are much larger than in the former case.

5.3 Complete graphs with random edge weights

Table 6 gives the result for complete graphs with random edge weights uniformly distributed
over [1, 10L] (L = 2, 3). Again each row is the average of 10 independent runs. In this case,
All_MST1 is faster than All_MST, but only 2–4 times, as opposed to 50–70 times in the case
of planar graphs. This may be explained by considering the ratio of the number of subproblems
generated in All_MST over the total number of MSTs (i.e. #sub/N in Tables 5 and 6). For planar
graphs this ratio is approximately 20–50 in the case of L = 2 and 100–500 for L = 3. Similarly,
for complete graphs the ratio is 3–10 (L = 2) and 10–40 (L = 3), respectively. Thus, the ratio
is larger for planar graphs than for complete graphs, meaning that All_MST generates more
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Table 5. Result of experiments (planar graphs, random edge weights).

All−MST All−MST1

L Graph z� N # sub CPU CPU

2 P20×46 459.1 1.2 20.6 0.00 0.00
P50×127 1110.9 1.2 53.2 0.01 0.00
P100×260 2224.7 2.2 119.3 0.04 0.00
P200×560 4211.6 18.0 1108.3 1.34 0.06
P400×1120 8367.9 147.0 6995.3 29.68 0.85
P600×1680 12,615.5 1921.6 65,154.7 587.30 14.16
P800×2240 17,065.8 15,592.8 603,647.5 5604.70 185.15

3 P20×46 4080.5 1.0 20.0 0.00 0.00
P50×127 10,535.3 1.1 52.9 0.01 0.00
P100×260 21,479.5 1.1 107.4 0.04 0.00
P200×560 40,590.2 1.6 239.0 0.30 0.01
P400×1120 81,766.4 1.9 518.8 2.24 0.07
P600×1680 122,550.5 3.1 1116.5 10.46 0.23
P800×2240 162,966.2 2.0 1169.3 20.83 0.36
P1000×2800 204,548.9 3.2 1673.4 43.28 0.67

Table 6. Result of experiments (complete graphs, random edge weights).

All−MST All−MST1

L Graph z� N # sub CPU CPU

2 K20 120.9 3.6 38.2 0.00 0.00
K40 141.1 11.0 112.8 0.02 0.01
K60 152.5 1669.2 8840.1 3.15 1.57
K80 165.9 1,494,553.0 4,647,056.0 3236.55 1511.29

3 K20 1114.2 1.1 20.2 0.00 0.00
K40 1224.0 2.5 59.9 0.01 0.01
K60 1260.5 4.1 101.8 0.04 0.02
K80 1253.0 3.1 136.9 0.10 0.05
K100 1264.1 9.3 227.4 0.26 0.12
K120 1251.6 14.3 361.4 0.59 0.28
K140 1281.3 123.2 1768.9 3.78 1.88
K160 1274.3 337.4 7966.7 24.49 11.46
K180 1288.8 3980.0 63,892.2 287.48 136.65
K200 1296.4 7434.4 145,946.9 871.92 427.49

‘redundant’ subproblems in planar graphs than in complete graphs. Since All_MST1 does not
produce such an redundant subproblem, All_MST1 is more superior to All_MST in planar graphs
than in complete graphs.

6. Conclusion

We have developed an algorithm to list all the minimum spanning trees in an undirected graph,
and explored some properties of cut-sets. Furthermore, based on these, we have constructed an
improved algorithm, which runs in O(Nm log n) time and O(m) space. We have not implemented
All_MST2, but this is expected to be better than All_MST or All_MST1 for larger problems.
Numerical experiment of this part is left for our future work.
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