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A Reduction Approach to the Repeated Assignment
Problem

Daisuke Yokoya and Takeo Yamada∗

Department of Computer Science, The National Defense Academy,

Yokosuka, Kanagawa 239-8686, Japan

Abstract
We formulate and solve the repeated assignment problem, which is aK-fold repeti-

tion of then×n assignment problem, with the additional requirement that no assignments
can be repeated more than once. We present a repeated Hungarian method to derive an
upper bound, and continuous and Lagrangian relaxations to obtain lower bounds. The
Lagrangian relaxation problem decomposes into a set ofK independent assignment prob-
lems, and by applying the pegging test to each of the decomposed problem, the RAP is
(often significantly) reduced in size and can be solved using MIP solvers. In addition, the
pegging test is simplified for the assignment problem, and we present a ‘virtual’ pegging
test for further reduction of computation. Through numerical experiments, we examine
the performance of the developed method to solve RAP.

Keywords: Repeated assignment problem, Combinatorial optimization, Relaxation, Pegging
test.

1 Introduction

We are concerned with therepeated assignment problem(RAP), which is aK-fold rep-
etition of then × n assignment problem(AP, [1]), with the additional requirement that no
assignments can be repeated more than once. Mathematically, the problem is formulated as
the followingbinary integer program(BIP [13]).

RAP: minimize
K∑

k=1

n∑
i=1

n∑
j=1

ck
i j x

k
i j (1)

subject to
n∑

j=1

xk
i j = 1, ∀i, k, (2)

n∑
i=1

xk
i j = 1, ∀ j, k, (3)

K∑
k=1

xk
i j ≤ 1, ∀i, j, (4)

xk
i j ∈ {0,1}, ∀i, j, k. (5)
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Here,ck
i j is thecostof assigningi to j at thek-th repetition, andxk

i j is the decision variable
such thatxk

i j = 1 in the above assignment, andxk
i j = 0 otherwise.

The case ofK = 1 is the standard assignment problem, which can be solved in polynomial
time using, e.g., theHungarian method[1, 7]. Another special case of RAP whereck

i j is
constant for allk, i.e.,ck

i j ≡ ci j , can be reduced to the solution of a minimum cost flow problem
andK − 1 maximum flow problems, and thus solvable in polynomial time [14]. However, it
is not clear (to the authors) whether the general RAP isNP-hard [5] or not. Since RAP is
a linear 0-1 programming problem, small instances can be solved using commercial or free
mixed integer program(MIP) solvers. The purpose of this paper is to present a procedure that
specializes in solving larger RAPs.

The organization of the paper is as follows. In section 2, we present a greedy heuristic
termed as therepeated Hungarian method, and prove that this works correctly to give an
upper bound to RAP. Next, we derive a lower bound by continuously relaxing the constraint
(5). To solve the resultinglinear program(LP), which is often of a huge size, we present a
delayed-inclusionmethod. The same lower bound can be obtained by the Lagrangian relax-
ation [4] of (4), provided that we use the ‘correct’ Lagrangian multipliers. From the result
of continuous-relaxation, we obtain such a set of multipliers, and the Lagrangian relaxation
problem is decomposed intoK independent assignment problems.

Next, in Section 3, we explain how thepegging test(to reduce the size of general BIP,
[8]) can be tailored for RAP. By applying this test, some variables are fixed either at 0 or 1,
and removing these fixed variables RAP is reduced (often significantly) in size. We can solve
the reduced problem using commercial or free MIP solvers.

To apply the pegging test to each of the decomposed assignment problem, however, we
need afeasible canonical form(FCF, [2, 9]) of the problem in optimality. Usually, assignment
problem is solved using algorithms such as the Hungarian method, but these efficient meth-
ods do not produce optimal FCFs. We show how such an FCF can be reconstructed from the
result of the Hungarian method. Furthermore, from theunimodularity[13, 10] of the assign-
ment matrix, the pegging test can be simplified in this case. Through the improved pegging
procedure, we obtain the same pegging result with much smaller amount of computation.

Finally, in Section 4 we introduce thevirtual pegging test[16] to further reduce the
amount of computation, and examine the performance of the developed method to solve
RAP in a series of numerical tests for randomly generated instances of various statistical
characteristics.

2 Upper and lower bounds

Here we discuss upper and lower bounds to RAP. Continuous and Lagrangian relaxations
give the same lower bound. We introduce the continuous relaxation to find the optimal La-
grangian multipliers, and the latter is substantial in reducing the size of the problem in later
sections.

2.1 Repeated Hungarian method

We propose the repeated Hungarian method to find a feasible solution and correspondingly
an upper bound to RAP. LetF ⊆ {(i, j) | 1 ≤ i, j ≤ n} be the set off orbiddenpairs of
assignment, which is initially empty, and APk(F) denotes the assignment problem with the
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modified cost matrix (˜ck
i j ) defined as

c̃k
i j =

{
ck

i j , (i, j) < F,
∞, (i, j) ∈ F.

The bipartite graph[1] associated with this assignment problem is denoted asHk(F), and
applying the Hungarian method, we obtain acomplete matching Mk(F) in Hk(F). The edges
in Mk(F) are then removed from the subsequent assignments by puttingF := F ∪ Mk(F).
The repeated Hungarian method is formally given as follows.¶ ³

Algorithm REPEATED-HUNGARIAN.

Step 1. Setk := 1 andF := ∅.

Step 2. Using the Hungarian method solve APk(F) and obtain an optimal bipartite
matchingMk(F).

Step 3. If k = K stop. Otherwise, putk := k+1, F := F ∪Mk(F), and go back to Step 2.µ ´
This algorithm stops at theK-th iteration with a feasible solution to RAP, and the corre-

sponding upper bound is denoted as ¯zRAP. The correctness of this method is shown through
the following.

Lemma 1 For any k≤ n, there exists a complete matching in Hk(F).

Proof: Let V1 andV2 be the sets of left and right nodes ofHk(F), respectively. For an arbitrary
U ⊆ V1, N(U) ⊆ V2 is the set of nodes which are adjacent toU. Here, we note that thenode-
degreeof each node ofHk(F) is n − k + 1. Then, the numbers of edges incident toU and
N(U) are, respectively, (n− k+ 1)|U | and (n− k+ 1)|N(U)|. Also, all the edges incident toU
is incident toN(U), but not necessarilyvice versa. Thus, we have|U | ≤ |N(U)|, and by Hall’s
theorem [11] the proof is complete.

From this the following is straightforward.

Theorem 1 REPEATED-HUNGARIANgives a feasible solution to RAP.

Example 1 We consider a RAP with n= 4,K = 2 and the following cost matrices.

C1 =


48 8 6 60
125 48 41 33
18 97 58 88
59 23 46 56

 , C2 =


73 24 19 79
89 6 9 25
44 72 108 30
101 24 64 103

 .
Underlined in these matrices indicate a feasible solution obtained by the repeated Hungarian
method, with the corresponding upper boundzRAP= 244.

3
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2.2 Lower bound by continuous relaxation

Let C(RAP) be thecontinuous relaxationof RAP where (5) is replaced withxk
i j ≥ 0. This

is an LP problem with 2nK+n2 constraints andn2K variables. Thus, forn = 1000 andK = 10
we have an LP problem with 1,020,000 rows and 10,000,000 columns, which is hard to solve
on ordinary personal computers using available solvers. Here, we present a delayed-inclusion
approach to solve such a large LP problem.

2.2.1 Delayed-inclusion method

Let us consider an LP problem

P : maximizecT x subject toAx≤ b, x ≥ 0,

and letC̄ andR̄denote, respectively, the sets of all constraints and all variables of P. In matrix

A, column j is said to bezero(with respect to an optimal solutionx∗ of P) if x∗j = 0. Also
row i is activeif equality holds in theith constraint of P atx∗.

Corresponding to an arbitrary pair of subsetsC ⊆ C̄ andR ⊆ R̄, we introduce an LP
problem P(R,C) as the restriction of P to this part. Partitioning the matrix as

C C′ const
R A00 A01 b0

R′ A10 A11 b1

obj cT
0 cT

1 0

we have P(R,C) explicitly written as

P(R,C) : maximizecT
0 x subject to A00x ≤ b0, x ≥ 0.

Let a pair of primal and dual optimal solutions to this problem bex∗(R,C) andy∗(R,C),

respectively. Then, we have the following.

Theorem 2 If

(i) A10x∗(R,C) ≤ b1 (primal feasibility)and

(ii) y∗(R,C)TA01 ≥ cT
1 (dual feasibility)

are both satisfied, then the vectors obtained by filling zeros to the remaining parts C′ and R′,
i.e., x∗ := (x∗(R,C),0) and y∗ := (y∗(R,C),0), are optimal to P and its dual D, respectively.

Proof: Straightforward from the duality of LP problems.

Here, if we know correct partition (R,C) a priori so that (i) and (ii) in Theorem 2 are
satisfied, we can obtain an optimal solution to P by solving (usually) a much smaller problem
P(R,C). Unfortunately, we do not know exactly which rows/columns can be thus eliminated
until we completely solve P. In the delayed-inclusion approach, we start with aguessof
these sets, i.e., we takeR0 as a set of plausibly active constraints, andC0 a set of seemingly

4
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non-zero variables in optimality. Then, after solving the reduced problem, if some feasibility
conditions are not satisfied, we revive the violated rows/columns and repeat the process all
over again. More precisely, the algorithm is as follows.¶ ³

Algorithm DELAYED-INCLUSION.

Step 1. Take an arbitrary pair ofR0 andC0, and put (R,C) := (R0,C0).

Step 2. SolveP(R,C), and obtainx∗ = x∗(R,C) andy∗ = y∗(R,C).

Step 3. If there exist rows violatingA10x∗ ≤ b1, add these rows toR.

Step 4. If there exists columns violatingy∗A01 ≥ c1, add these columns toC.

Step 5. If neither violating rows nor columns exist,x∗ andy∗ (supplemented with ap-
propriate 0 elements) solve P and D, respectively. Thus, output these and stop.
Otherwise, go back to Step 2.µ ´

In Step 2 above, P(R,C) may be solved from scratch each time as a new LP problem. Or,
better than that, we can add the violated rows and columns to the optimal simplex tableau
at the previous iteration and solve the augmented P(R,C) more quickly. If P(R,C) is always
feasible in DELAYED-INCLUSION, this clearly solves P. Specifically, if P(C0, R̄) is feasible,
it is easily proved that P(R,C) is always feasible, sinceC0 ⊆ C andR̄⊇ R.

2.2.2 Application to RAP

In applying DELAYED-INCLUSION to C(RAP), we need to specify the starting pair (R0,C0)
of the sets of rows and columns. AsR0 we take constraints (2) and (3), which are always active
in any optimal solutions to C(RAP). Contrary to this, most of the constraints (4) are usually
inactive.

On the other hand, appropriate choice of startingC0 is not so clear. To determine this, we
make use of the solution obtained by REPEATED-HUNGARIAN. Indeed, with the solution
x̄ = (x̄k

i j ) from the algorithm we define the initial set of columnsC0 as

C0 := {(i, j, k) | x̄k
i j = 1, ∀i, j, k}.

Clearly, in this case P(̄R,C0) is feasible, and therefore DELAYED-INCLUSION solves C(RAP)
correctly. Moreover, if ¯x is a ‘good’ approximation, it is expected that most of the columns
of C0 are actually non-zero in optimality. The lower bound obtained by solving C(RAP) this
way is denoted asz

C
.

Example 2 Applying DELAYED-INCLUSION to the RAP of Example 1, we obtain a lower
bound z

C
= 238.5 after solving 7 LP problems of at most18× 21. In Table 1, we show the

numbers of rows and columns, as well as the objective value at each iteration. The same
lower bound is obtained by solving C(RAP) directly.

5
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Table 1: Behavior of DELAYED-INCLUSION.

Cycle #Row #Col zC
1 14 8 244.0
2 14 12 236.0
3 15 14 216.0
4 16 15 237.0
5 18 16 244.0
6 18 19 238.5
7 18 21 238.5

2.3 Lagrangian relaxation

With nonnegative multipliersγ = (γi j ) associated with (4), the Lagrangian relaxation of
RAP is defined as

LRAP(γ) : minimize
K∑

k=1

n∑
i=1

n∑
j=1

(ck
i j + γi j )x

k
i j −

n∑
i=1

n∑
j=1

γi j

subject to (2), (3) and (5).

For a fixedγ ≥ 0, this can be decomposed intoK independent assignment problems.

APk(γ) : minimize
n∑

i=1

n∑
j=1

(ck
i j + γi j )x

k
i j (6)

subject to
n∑

j=1

xk
i j = 1, ∀i, (7)

n∑
i=1

xk
i j = 1, ∀ j, (8)

xk
i j ∈ {0,1}, ∀i, j. (9)

Let the optimal objective values to LRAP(γ) and APk(γ) bez(γ) andzk(γ) respectively, and
consider theLagrangian dual:

minimize z(γ) subject toγ ≥ 0.

The optimal objective value to this problem, denoted asz
L
, gives the lower bound by the

Lagrangian relaxation.
Let (u†, v†, γ†) ∈ RnK ×RnK ×Rn2

+ be an optimal solution to thedualof C(RAP), whereu†,
v† andγ† correspond to (2), (3) and (4), respectively. Then, we have the following.

Theorem 3 γ† gives an optimal solution to the Lagrangian dual, That is, z
L
= z(γ†). More-

over, this coincides with the lower bound obtained by the continuous relaxation, i.e., z
L
= z

C
.

Proof: Since LRAP(γ†) is K independent assignment problems, all extreme points of the
feasible region of (2), (3), (5) are integral. Then this theorem follows from Theorem 10.3 of
Wolsey [13].

6
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Thus, in what follows we writez
RAP

, zk and APk instead ofz
C

(or z
L
), zk(γ†), and APk(γ†),

respectively. The lower bound is then given as

z
RAP
=

K∑
k=1

zk −
n∑

i=1

n∑
j=1

γ†i j . (10)

Example 3 From the solution to C(RAP), we obtain the optimalγ† as

γ† =


0.0 0.0 2.5 0.0
0.0 0.0 0.0 8.0
13.5 0.0 0.0 0.0
0.0 22.5 0.0 0.0

 .
For k = 1, we solve AP1 with cost matrix

C̄1 := C1 + γ† =


48.0 8.0 8.5 60.0
125.0 48.0 41.0 41.0
31.5 97.0 58.0 88.0
59.0 45.5 46.0 56.0

 ,
and obtain the optimal matching as underlined above, with the corresponding objective value
z1 = 126.5. Similarly, we have z2 = 158.5, and from (10) obtain z= 238.5 again.

3 Pegging test

Let δ be either 0 or 1, and defineGap := z̄RAP− z
RAP

for the upper and lower bounds
obtained previously. By RAP(xk

i j = δ) we mean RAP with one more constraintxk
i j = δ added,

andz(xk
i j = δ) denotes the lower bound to this modified problem. Then, ifz(xk

i j = δ) ≥ z̄RAP,
no better solution than ¯zRAP can be expected by fixingxk

i j = δ, and thus we conclude that
xk

i j = δ
′ in optimality, whereδ′ := 1− δ.

Then, to evaluatez(xk
i j = δ) we introduce an assignment problem APk(xk

i j = δ) as APk

with xk
i j = δ added, and its optimal objective value is denoted aszk(xk

i j = δ). Then, from (10)
we have

z(xk
i j = δ) = z

RAP
+ zk(xk

i j = δ) − zk.

Thus, we can fixxk
i j atδ′ if

zk(xk
i j = δ) − zk ≥ gap. (11)

To determine if (11) is satisfied quickly, we consider thepegging testfor general BIP first.

3.1 Pegging test for general BIP

Here we briefly summarize some basic results on the pegging test [8, 15] for readers’
convenience. For simplicity of notation, let us consider the following BIP.

Q: minimizez(x) := cT x subject toAx= b, xj ∈ {0,1}, ∀ j.

Let x⋆ = (x⋆j ) ∈ Rn be an optimal solution to Q with the objective valuez⋆ := z(x⋆). First,

7
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we relax the 0-1 constraints to the continuous

0 ≤ xj ≤ 1, ∀ j.

The resulting LP is denoted as C(Q). Solving this yields an optimal solutionx with the cor-
responding objective valuez := z(x), which gives a lower bound to Q. Next, assume that we
have a feasible solution ¯x ∈ Rn to Q, and corresponding upper bound ¯z := z(x̄). Thus we have

z≤ z⋆ ≤ z̄.

Let an optimalfeasible canonical form(FCF, [3]) of C(Q) be

b̄i = xB(i) +
∑
j∈N
αi j xj , (12)

z = z+
∑
j∈N
α0 j xj , (13)

whereN is the index set ofnon-basic variables, andB(i) denotes the index of theith basic
variable. From optimality of this form we have

α0 j ≥ 0, ∀ j ∈ N,

0 ≤ b̄i ≤ 1, ∀i.

For eachi we define

PUi := min{−α0 j/αi j | j ∈ N, αi j < 0}(1− b̄i), (14)

PLi := min{α0 j/αi j | j ∈ N, αi j > 0}b̄i . (15)

Here, if the defining set is empty, we set min{· | ∅} := ∞. Then, we have

Theorem 4 [8]

(i) For basic variable xB(i) in (12),

PUi > z̄− z ⇒ x⋆B(i) = 0, (16)

PLi > z̄− z ⇒ x⋆B(i) = 1. (17)

(ii) For non-basic variable xj ( j ∈ N) in (13),

α0 j > z̄− z ⇒ x⋆j = 0. (18)

3.2 Pegging test for RAP

By solving an assignment problem APk using the Hungarian method, we obtain an optimal
assignmentx† = (x†i j ) as well as an optimal solution (u†, v†) to the dual of AP (superscriptk
is dropped in the remainder of this section), which is given as

DAP: maximize
n∑

i=1

ui +

n∑
j=1

vj (19)

subject to ui + vj ≤ c̄i j , ∀i, j. (20)

8
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Here, we write ¯ci j := ci j + γ
†
i j , and these satisfy thecomplementary slackness condition[2]:

x†i j = 1⇒ u†i + v†j = c̄i j . (21)

However, to apply Theorem 4 to APk and see if (16) - (18) are satisfied, we need an optimal
FCF of the problem. Here we explain how such an FCF can be reconstructed from the output
of the Hungarian method.

Corresponding to (u†, v†), we introduce an undirectedbipartite graph H(u†, v†) consisting
of the left and right sets of nodesL = {l1, l2, . . . , ln}, R = {r1, r2, . . . , rn} and the set of arcs
A(u†, v†) = {(l i , r j) ∈ L × R | u†i + v†j = c̄i j }. This includes aperfect matching M= {(l i , r j) ∈
L × R | x†i j = 1} in H(u†, v†). Now, if H(u†, v†) is unconnected, we can modify (u†, v†) by
executing the following steps repeatedly until finally the graph is connected. Let us consider
theconnected componentsof H(u†, v†), and by comp(·) we denote the component to which
node· belongs.¶ ³

ProcedureDUAL-UPDATING

Step 1. DecomposeH(u†, v†) into connected components.

Step 2. Findα := min{c̄i j − u†i − v†j | (l i , r j) ∈ L × R, comp(l i) , comp(r j)}, and let
(l i , r j) be a pair where the minimum is attained.

Step 3. Modify (u†, v†) according to:

u†i ← u†i − α, for all l i ∈ comp(r j),

v†j ← v†j + α, for all r j ∈ comp(r j).µ ´
Note that each component ofH(u†, v†) includes identical number of left and right nodes,

due to the existence of the perfect matchingM. Then, after DUALUPDATING the objective
value (19) remains unchanged, and (20) and complementary slackness condition (21) con-
tinue to be satisfied. Thus, the updated (u†, v†) is still optimal to DAP, and the number of arcs
in H(u†, v†) is increased at least by 1. After repeating DUAL-UPDATING at mostn−1 times,
we obtain a connectedH(u†, v†).

Here, letT be aspanning treeof H(u†, v†). Without loss of generality, we assume that the
perfect matchingM is included inT. Now, the assignment problem AP can be written as

BxB + Nxn = 1,

cBxB + cNxN = z,

whereB andN are the columns corresponding to basic and non-basic variables, which are
denoted asxB andxN respectively. Here we take the variables corresponding to the arcs of
T as xB, and the remaining variables representsxN. Then, theincidence matrixof AP is
correspondingly partitioned as (B,N), and the cost vector (¯ci j ) is written as (cB, cN). If we
arrange the rows and columns of the tableau in the order of nodes and arcs as encountered
in thebreadth-first traverse[12] of T starting from nodel1, B necessarily becomes anupper
triangular matrix, which is easily inverted. Thus from the optimal matching obtained by the
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Hungarian method we have reconstructed an optimal FCF for AP as

xB +B−1NxN = B−11,

(cN − cBB−1N)xN = z− cBB−11.

Example 4 For AP1 with cost matrixC̄1 given in Example 3, by the Hungarian method we
obtain the solution depicted in Fig. 1, where u†i and v†j are shown at each node, and thick
lines show the matching M. Here H(u†, v†) consists of only one connected component, and
a spanning tree is depicted with (thick and thin ) solid lines. Also, attached at each node in

Figure 1: Optimal assignment fork = 1.

the figure is the number of steps as encountered in the breadth-first walk [12] from node l1.
Then, rearranging rows and columns in AP1, the basic and non-basic parts of the problem
are given as Tables 2 - 3. The objective line comes fromC̄1.

Table 2: Upper triangular matrixB in the initial simplex tableau.

node x12 x13 x43 x41 x44 x31 x24

r2 1
r3 1 1
l4 1 1 1
r1 1 1
r4 1 1
l3 1
l2 1

min 8.0 8.5 46.0 59.0 56.0 31.5 41.0

10
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Table 3: Non-basic partN of the initial tableau.

x11 x14 x21 x22 x23 x32 x33 x34 x42 const
1 1 1 1

1 1 1
1 1

1 1 1
1 1 1

1 1 1 1
1 1 1 1

48.0 60.0 125.0 48.0 41.0 97.0 58.0 88.0 45.5 0.0

The matrix B of Table 2 can be easily inverted, and we obtain the non-basic part of the
optimal simplex tableau as shown in Table 4.

Table 4: Non-basic partB−1N of the optimal FCF.

x11 x14 x21 x22 x23 x32 x33 x34 x42 const
1 1 1 1

1 1 −1 −1 −1
−1 −1 1 1 1 1 1 1

1 1 −1 −1 −1
1 −1 −1 −1 1

1 1 1 1
1 1 1 1

26.5 41.5 81.0 17.5 10.0 79.0 39.5 59.5 0.0 -126.5

Having an optimal FCF for AP, we can now apply the pegging test (Theorem 4) and fix
some variables as follows.

Example 5 With gap = zRAP − z
RAP
= 5.5, we see all non-basic variables except for x1

42
are fixed at 0. For basic variables, from (i) of Theorem 4, we fix variables as: x1

41 = x1
44 =

0, x1
31 = x1

24 = 1, and we have only 4 variables unfixed for k= 1. Similarly, from k= 2
we have 7 unfixed variables, and removing the fixed parts, we have a BIP with 11 variables
and 21 constraints. Solving this, we obtain an optimal solution to RAP with z∗ = 241, which
is identical to the value obtained by solving the original RAP (with 50 variables and 45
constraints) directly.

3.3 An improved reduction method for RAP

A difficulty with the pegging test of section 3.2 is the reconstruction of an optimal FCF for
AP. For an assignment problem of sizen×n, after obtaining the basis matrixB and its inverse
B−1, computing all the elements ofB−1N can be quite expensive for problems with largen,
sinceN is a matrix of (2n − 1) × (n2 − 2n + 1). However, we show here that a very small

11
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portion ofB−1N suffices to carry out the pegging test, which enables us a drastic speed-up of
computation.

Let us consider the optimal FCF given by (12) and (13). From theunimodularity[1] of
the coefficient matrix (B,N) in the assignment problem we have the following for alli and j.

αi j ∈ {−1,0,1}, ∀i, j ∈ N, (22)

b̄i ∈ {0,1}, ∀i. (23)

Let

N+ := { j ∈ N | α0 j > z̄− z}, N− := { j ∈ N | α0 j ≤ z̄− z}. (24)

Then, we have

Theorem 5

(i) b̄i = 1 and { j ∈ N− | αi j = 1} = ∅ ⇒ x⋆B(i) = 1,

(ii) b̄i = 0 and { j ∈ N− | αi j = −1} = ∅ ⇒ x⋆B(i) = 0.

Proof: (i) From (15), PLi = min{α0 j | αi j = 1, j ∈ N} = min{PL+i ,PL−i }, wherePL±i :=
min{α0 j | αi j = 1, j ∈ N±}, respectively. By definition ofN+, we havePL+i > z̄ − z and
PL−i ≤ z̄− z. Then,PLi > z̄− z⇔ { j ∈ N− | αi j = 1} = ∅; hence from Theorem 4, (i) is
proved. (ii) is proved analogously.

An important implication of this theorem is that, in carrying out the pegging test, we only
need columns inN−, and see if{ j ∈ N− | αi j = ±1} = ∅ is satisfied. Frequently,|N−| is much
smaller than|N|, and if this is the case pegging test by Theorem 5 is far more faster than the
direct application of Theorem 4. For the example of Section 3.2, we only need the column of
x42 to obtain the same pegging result.

4 Virtual pegging approach

The usefulness of the pegging test depends on the gap between the upper and lower
bounds. If the gap is not small enough, the effectiveness of the method is limited, since
the size of the problem will not be reduced much in such a case. In the present section, we
introduce avirtual pegging test in order to cope with this difficulty.

4.1 The principle

For the problem Q of Section 3.1, pegging test works with a pair of upper and lower
bounds ¯z andz satisfying

z ≤ z⋆ ≤ z̄. (25)

However, we may perform the pegging test using an arbitrary valuel within [z, z̄] as a hypo-
thetical upper bound. Such anl is said to be atrial value. As the result of this pegging withz
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andl, somexj ’s will be fixed either at 0 or 1. But this pegging is not guaranteed to be correct
becausel is not necessarily a true upper bound. Let the index sets of variables, which are
‘fixed’ at 0 and 1 by the above procedure, beF0(l) andF1(l) respectively. Then, we have the
following reduced problem.

Q(l): minimizecT x subject toAx= b, xj ∈ {0,1}, and

xj = 1, if j ∈ F1(l), xj = 0, if j ∈ F0(l).

The optimal objective value to this problem will be denoted asz⋆l , and is referred to as the
realizationfor the trial valuel. If Q(l) is infeasible, we putz⋆l := ∞. Then, we have

Theorem 6 [16] For an arbitrary trial value l≥ zand its realization z⋆l , the followings hold.

(i) l ≥ z⋆ ⇒ z⋆l = z⋆,

(ii) l < z⋆ ⇒ z⋆l ≥ z⋆,

(iii) l ≥ z⋆l ⇒ z⋆l = z⋆.

4.2 A virtual pegging procedure

To apply the virtual pegging method to RAP, we prepare a parameterα > 0, which we call
thevirtual gap, such thatα < gap := z̄RAP−z

RAP
. We present a procedure which reduces RAP

to a small BIP, and by solving it we often obtain an exact solution to the original problem.
The procedure is as follows.¶ ³

ProcedureVIRTUAL-PEGGING.

Input: z̄RAP, zRAP
and optimal FCFs for APk (k = 1, . . . ,K).

Parameter: Virtual gapα.

Step 1. Apply the pegging test (Theorem 5) to each of APk with trial valuez
RAP
+ α.

Step 2. Eliminate the fixed variables from RAP and obtain a reduced BIP.

Step 3. Solve the BIP using a MIP solver, and obtain a feasible solutionx♯ to RAP with
the corresponding objective valuez♯. Output (x♯, z♯) and stop.µ ´

Actually, z♯ is the realization for the trial valuez
RAP
+ α. Then, by Theorem 6, ifz♯ ≤

z
RAP
+α the solution is proved optimal. Even ifz♯ > z

RAP
+α, it is often the case thatz♯ < z̄RAP,

and then we have a better upper bound than ¯zRAP. Or, we may retry VIRTUAL-PEGGING
with α increased until optimality of the solution is proved.

13
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5 Numerical experiments

This section gives the results of numerical experiments conducted to evaluate the perfor-
mance of the proposed method. We implemented REPEATED-HUNGARIAN, DELAYED-
INCLUSION and VIRTUAL-PEGGING procedures in ANSI C language, and carried out
computation on an Dell DIMENSION 8250 computer (CPU: Pentium4, 3.40GHz, 2.00GB
RAM). To solve LP and BIP problems, CPLEX 11.1 was used on the same computer.

5.1 Design of experiments

The instances were prepared in the following way. First, anominalcostc0
i j is assumed to

be uniformly random over the integer interval [1,1000], and the costck
i j at k-th repetition is

determined as a uniformly random integer over [Floor, Ceil], where

Floor := max{C0
i j − 1000(1− σ),1}, Ceil := min{c0

i j + 1000(1− σ),1000}.

Here,σ denotes the parameter representing the degree ofcorrelationbetween the costs over
k = 1,2, . . . ,K. We tried three cases:

• Uncorrelated (UNCOR):σ = 0.0.

• Weakly correlated (WEAK):σ = 0.3.

• Strongly correlated (STRONG):σ = 0.6.

In Figure 2 we plot (c1
i j , c

2
i j ) for each of these correlation types.

Figure 2: Correlation between (c1
i j , c

2
i j ).

5.2 A numerical example

For an instance withn = 120,K = 12 andδ = 0.3, we obtained bounds as ¯zRAP = 27713
andz

RAP
= 27199.7. Assuming the virtual gap ofα = 5, 103,560 (out of 173,800) variables

were fixed at 0, and removing these we got a BIP with 69240 variables and 17147 constraints.
Using CPLEX we solved this and obtained a solution withz♯ = 27205, which was much better
thanz̄RAP. However, this solution was not proved optimal, sincez♯ − z > α. Then, we repeat
VIRTUAL-PEGGING withα increased toα = 10. We obtainedz♯ = 27205 again, and this
was proved to be optimal, since we havez♯ − z< α.
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5.3 Result of experiments

Table 5 shows the result of computation of the upper and lower bounds (¯z and z
RAP

).
Each row is the average over 10 randomly generated instances, and in addition to ¯z andz the
columns stand for the followings: ‘#Col,’ ‘#Row’ and ‘#Cycle’ stand for the maximum num-
ber of columns and rows in DELAYED-INCLUSION, and the number of iterations (Steps 2 -
5) repeated therein. ‘CPU1’ is the CPU time in seconds to compute ¯zandz, andgap := z̄− z.

Table 6 summarizes the result of VIRTUAL-PEGGING withα = 5 for the same instances
as in Table 5. We show here the numbers of variables fixed at 0 and 1 (‘#Fix0’ and ‘#Fix1’,
resp.), the size of the reduced BIP (‘#Col’ and ‘#Row’, resp.), the optimal objective value
(z⋆) and the total CPU time (CPU1 + the time to solve the reduced BIP problem) in seconds.
The column of ‘#Int’ gives the number of instances (out of 10) where integer solutions were
obtained in DELAYED-INCLUSION. In such a case, we put #Fix1 = nK, #Fix0 = n2K−nK,
and #Col=#Row=0 in computing the averages. Also, the column of ‘#Opt’ gives the number
of instances where the solution was proved optimal (α > z♯ − z

RAP
).

Table 5: Upper and lower bounds
σ n K z̄RAP #Row #Col #Cycle zRAP Gap CPU1

0.0 200 4 7054.4 1604.2 2471.1 4.3 7047.1 7.3 0.27
8 14199.6 3234.4 5001.7 5.6 14149.1 50.4 0.79

12 21504.9 4891.6 7697.3 7.3 21354.0 150.8 1.67
400 4 7430.6 3202.1 4882.4 4.3 7427.8 2.8 1.27

8 14859.6 6428.5 9903.3 5.8 14826.4 33.1 3.58
12 22282.7 9677.2 15013.8 6.3 22194.3 88.4 5.93

600 4 7772.8 4801.9 7350.2 4.4 7769.5 3.3 3.00
8 15589.4 9624.3 14806.8 5.8 15568.4 21.0 7.49

12 23455.7 14472.1 22408.4 7.0 23397.9 57.7 14.13
0.3 200 4 9042.2 1606 2481.2 4.2 9026.6 15.6 0.29

8 18187.2 3251.3 5108.1 6.3 18062.2 125.0 0.87
12 27709.4 4944.3 7874.8 8.0 27355.7 353.6 2.21

400 4 9477.5 3206.5 4951 4.6 9467.6 9.9 1.32
8 18995.3 6446.8 10034.2 6.1 18926.1 69.1 3.42

12 28593.8 9730.3 15197.3 7.5 28402.1 191.6 7.33
600 4 9815.4 4806 7323.1 4.9 9809.5 5.9 3.04

8 19674.4 9642.4 14976.3 6.2 19629.7 44.7 7.83
12 29699.1 14523.2 22654.5 7.5 29591.3 107.7 18.38

0.6 200 4 9842.4 1618.4 2521.2 5.0 9807.0 35.4 0.32
8 20135.7 3322.6 5292.1 8.1 19827.2 308.4 1.52

12 31137.1 5158.7 8209.3 8.8 30284.4 852.6 8.05
400 4 10216.9 3216.4 5025.3 5.2 10201.4 15.5 1.45

8 20772.8 6509.6 10304.1 7.0 20613.2 159.5 5.30
12 31402.7 9899.5 15747.1 8.2 31003.3 399.3 18.61

600 4 10599.6 4814 7404.1 5.3 10585.6 14.0 3.13
8 21326.1 9700 15136.6 7.5 21234.0 92.0 11.14

12 32247.8 14672.4 23079.2 9.0 32006.2 241.5 29.84
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Table 6: Reduction and CPLEX
σ n K #Int #Fix0 #Fix1 #Col #Row z♯ CPU #Opt

0.0 200 4 10 159200.0 800.0 0.0 0.0 7047.1 0.2 10
8 7 317792.3 1246.9 960.8 1629.3 14149.4 1.1 10

12 5 476051.1 1507.4 2441.5 4087.8 21354.5 2.5 10
400 4 10 638400.0 1600.0 0.0 0.0 7427.8 1.2 10

8 7 1274708.0 2368.4 2923.7 4512.2 14826.5 4.5 10
12 9 1914132.0 4377.3 1491.2 2272.5 22194.3 6.5 10

600 4 10 1437600.0 2400.0 0.0 0.0 7769.5 3.0 10
8 9 2873661.0 4347.5 1991.6 2849.6 15568.4 8.2 10

12 8 4308131.0 5944.0 6024.9 8511.9 23398.0 18.2 10
0.3 200 4 9 159118.8 749.8 134.4 238.0 9026.9 0.3 10

8 7 317902.4 1275.9 821.7 1430.9 18062.5 0.9 10
12 5 476232.3 1547.8 2219.9 3756.4 27356.2 4.1 10

400 4 10 638400.0 1600.0 0.0 0.0 9467.6 1.3 10
8 9 1276229.0 2934.8 836.7 1340.6 18926.2 3.6 10

12 6 1911771.0 3220.2 5009 7913.3 28402.4 12.3 10
600 4 10 1437600.0 2400.0 0.0 0.0 9809.5 3.0 10

8 9 2874012.0 4371.3 1616.3 2429.5 19629.7 8.7 10
12 4 4301969.0 3315.8 14715.3 21826.1 29591.5 30.3 10

0.6 200 4 9 159124.6 749.4 126 221.9 9807.0 0.3 10
8 2 316977.4 690.2 2332.4 3958.1 19829.1 15.0 10

12 0 474601.2 592.9 4805.9 7772.2 30303.4 726.8 0
400 4 9 638136.7 1471.6 391.7 637.9 10201.4 1.4 10

8 2 1272516.0 1130.4 6353.2 10136.9 20613.5 7.9 10
12 0 1906622.0 809.9 12568.5 19437.9 31005.9 300.8 9

600 4 10 1437600.0 2400.0 0.0 0.0 10585.6 3.1 10
8 4 2868446.0 2251.0 9302.8 13956.6 21234.3 17.4 10

12 2 4299009.0 2069.6 18921.3 27765.2 32007.1 139.3 10

From these tables, we observe the followings.

1. For K = 4, we often obtain an optimal solution by solving C(RAP) via DELAYED-
INCLUSION.

2. Although the gap between the upper and lower bounds increases with the problem size
(n and K) and the degree of correlation (σ), the actual optimal value (z⋆) is usually
very close to the lower bound (z

RAP
), and thus the virtual pegging is very effective to

the instances tested here.

3. Withα = 5, VIRTUAL-PEGGING reduces problem size to the level which is tractable
by MIP solvers such as CPLEX, and by solving the reduced BIP, except for some cases,
we obtain optimal solutions within a few minutes. Even if the solution is not proved
optimal, we usually have approximate solutions which are much better than the original
repeated Hungarian solution.
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5.4 Weakness of the pegging approach

VIRTUAL-PEGGING remains some weakness for instances with relatively smalln and
largeK andσ. Table 7 compares VIRTUAL-PEGGING against the direct solution of RAP
by CPLEX 11.1. Each row is again the average over 10 random instances, and ‘gap’ is again
z̄RAP− z

RAP
. In CPLEX, computation was truncated at the time-limit of 1800 CPU seconds,

and in such a case we took the incumbent objective value at that time asz♯ and CPU=1800 in
deriving averages. The findings from this table is as follows.

Table 7: Solution by CPLEX 11.1

σ n K
VIRTUAL-PEGGING CPLEX

Gap z♯ CPU #Opt z⋆ CPU
0.0 40 4 0.0 6390.7 0.01 10 6390.7 0.10

8 89.5 13297.8 0.09 6 13294.7 4.52
12 1164.5 20369.8 8.21 0 20293.2 112.35

80 4 1.6 6764.5 0.05 9 6764.5 1.37
8 28.9 13611.5 0.18 10 13611.5 4.08

12 263.2 20688.0 6.08 7 20687.7 58.88
120 4 0.0 6805.5 0.10 10 6805.5 5.78

8 6.5 13796.5 0.32 10 13796.5 12.92
12 106.2 20847.7 4.40 10 20847.7 54.90

0.3 40 4 0.0 8013.8 0.01 10 8013.8 0.10
8 441.1 16715.9 0.13 4 16604.0 17.43

12 1961.4 26778.1 3.33 0 25773.8 297.44
80 4 0.0 8618.0 0.05 10 8618.0 1.01

8 128.2 17372.2 2.51 6 17371.9 36.70
12 747.9 26642.1 60.84 0 26635.2 301.27

120 4 2.3 8781.3 0.12 10 8781.3 7.28
8 69.9 17855.7 0.56 10 17855.7 23.39

12 316.9 27021.1 70.54 1 27021.0 190.37
0.6 40 4 60.3 8679.1 0.03 8 8675.9 0.31

8 1696.5 19728.3 0.30 0 18623.3 165.33
12 6152.6 35406.5 2.07 0 31245.6 1808.62

80 4 20.3 9138.0 0.07 10 9138.0 1.32
8 465.1 18888.1 28.76 0 18872.8 204.40

12 1850.2 30141.2 1090.83 0 29831.4 1816.65
120 4 0.0 9503.2 0.12 10 9503.2 6.46

8 208.4 19516.9 32.21 4 19516.6 253.80
12 998.3 29983.2 1107.43 0 29976.9 1766.79

The findings from this table is as follows.

1. In these instances withn ≤ 120, the gap between the optimal objective value and the
lower bound (z⋆ − z

RAP
) is often larger thanα(= 5), and thus, VIRTUAL-PEGGING

fails to produce a solution with optimality proved. If we retry VIRTUAL-PEGGING
with an increasedα, we may obtain optimal solutions.

2. Even in such a case, we obtain feasible solutions withz♯ close to the optimal in shorter
time than the direct application of CPLEX.
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6 Conclusion

We formulated the repeated assignment problem, and presented an approach to solve this
problem. The proposed methods include REPEATED-HUNGARIAN, DELAYED-INCLUSION,
and VIRTUAL-PEGGING. Through numerical experiments, we found that the developed
method was able to reduce the size of the problem, often significantly, and the reduced BIP
can be solved using commercial or free MIP solvers. As the result, we were able to solve
RAP with up ton = 600 andK = 12, often with the proof of optimality. The method remains
some weakness for problems with relatively smalln and largeK, where direct application of
MIP solvers can be competitive solution strategy.
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