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Here,c!‘j is thecostof assigning to j at thek-th repetition, and<|!‘j is the decision variable
such thatx¢ = 1 in the above assignment, = 0 otherwise.

The case oK = 1is the standard assignment problem, which can be solved in polynomial
time using, e.g., thélungarian method1, 7]. Another special case of RAP whem# IS
constant for alk, i.e.,(::‘j = Gj, can be reduced to the solution of a minimum cost flow problem
andK — 1 maximum flow problems, and thus solvable in polynomial time [14]. However, it
is not clear (to the authors) whether the general RAR'%3-hard [5] or not. Since RAP is
a linear 0-1 programming problem, small instances can be solved using commercial or free
mixed integer prograniMIP) solvers. The purpose of this paper is to present a procedure that
specializes in solving larger RAPs.

The organization of the paper is as follows. In section 2, we present a greedy heuristic
termed as theepeated Hungarian methp@énd prove that this works correctly to give an
upper bound to RAP. Next, we derive a lower bound by continuously relaxing the constraint
(5). To solve the resultingnear program(LP), which is often of a huge size, we present a
delayed-inclusioomethod. The same lower bound can be obtained by the Lagrangian relax-
ation [4] of (4), provided that we use the ‘correct’ Lagrangian multipliers. From the result
of continuous-relaxation, we obtain such a set of multipliers, and the Lagrangian relaxation
problem is decomposed into independent assignment problems.

Next, in Section 3, we explain how thgegging tes{to reduce the size of general BIP,

[8]) can be tailored for RAP. By applying this test, some variables are fixed either at 0 or 1,
and removing these fixed variables RAP is reduced (often significantly) in size. We can solve
the reduced problem using commercial or free MIP solvers.

To apply the pegging test to each of the decomposed assignment problem, however, we
need deasible canonical forrfFCF, [2, 9]) of the problem in optimality. Usually, assignment
problem is solved using algorithms such as the Hungarian method, but tfiesnemeth-
ods do not produce optimal FCFs. We show how such an FCF can be reconstructed from the
result of the Hungarian method. Furthermore, fromuhanodularity[13, 10] of the assign-
ment matrix, the pegging test can be simplified in this case. Through the improved pegging
procedure, we obtain the same pegging result with much smaller amount of computation.

Finally, in Section 4 we introduce thértual pegging tes{16] to further reduce the
amount of computation, and examine the performance of the developed method to solve
RAP in a series of numerical tests for randomly generated instances of various statistical
characteristics.

2 Upper and lower bounds

Here we discuss upper and lower bounds to RAP. Continuous and Lagrangian relaxations
give the same lower bound. We introduce the continuous relaxation to find the optimal La-
grangian multipliers, and the latter is substantial in reducing the size of the problem in later
sections.

2.1 Repeated Hungarian method

We propose the repeated Hungarian method to find a feasible solution and correspondingly
an upper bound to RAP. Ldt C {(i,j) | 1 < i,] < n} be the set offorbiddenpairs of
assignment, which is initially empty, and AfF) denotes the assignment problem with the
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modified cost matrixcﬁj) defined as

1] o, (i,])eF.

The bipartite graph[1] associated with this assignment problem is denoteH'§E), and
applying the Hungarian method, we obtainamplete matching K{F) in H¥(F). The edges
in MX(F) are then removed from the subsequent assignments by p#ttiagF U M(F).
The repeated Hungarian method is formally given as follows.

4 . N
Algorithm REPEATED-HUNGARIAN.

Step 1. Setk := 1 andF := 0.

Step 2. Using the Hungarian method solve XP) and obtain an optimal bipartite
matchingMX(F).

Step 3. If k = K stop. Otherwise, p := k+ 1, F := F U M¥(F), and go back to Stepi

This algorithm stops at thK-th iteration with a feasible solution to RAP, and the corre-
sponding upper bound is denotedzage. The correctness of this method is shown through
the following.

Lemma 1 For any k< n, there exists a complete matching if(F).

Proof: LetV; andV, be the sets of left and right nodestdf(F), respectively. For an arbitrary
U c Vi, N(U) C V, is the set of nodes which are adjacenttoHere, we note that theode-
degreeof each node ofH(F) is n — k + 1. Then, the numbers of edges incidenttand
N(U) are, respectivelyn- k + 1)JU| and g — k+ 1)IN(U)|. Also, all the edges incident td
is incident toN(U), but not necessarilyice versa Thus, we havélJ| < [N(U)|, and by Hall’s
theorem [11] the proof is complete. 1

From this the following is straightforward.

Theorem 1 REPEATED-HUNGARIANgives a feasible solution to RAP.

Example 1 We consider a RAP witha 4, K = 2 and the following cost matrices.

48 8 6 60 73 24 19 79
c1_|125 48 4133 , |89 6 9 25
18 97 58 8§’ 44 72 108 30|
59 23 46 56 101 24 64 10

Underlined in these matrices indicate a feasible solution obtained by the repeated Hungarian

method, with the corresponding upper bowagde = 244.
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2.2 Lower bound by continuous relaxation

Let C(RAP) be theontinuous relaxatiolof RAP where (5) is replaced witkfj > 0. This
is an LP problem with @K +n? constraints and?K variables. Thus, fon = 1000 andK = 10
we have an LP problem with 1,020,000 rows and 10,000,000 columns, which is hard to solve
on ordinary personal computers using available solvers. Here, we present a delayed-inclusion
approach to solve such a large LP problem.

2.2.1 Delayed-inclusion method

Let us consider an LP problem

P : maximizec'x subjecttoAx<b, x>0,

and letC andR denote, respectively, the sets of all constraints and all variables of P. In matrix

A, columnj is said to bezero(with respect to an optimal solutioxi of P) if X; = 0. Also
row i is activeif equality holds in theth constraint of P ax". _

Corresponding to an arbitrary pair of subs€tsc C andR ¢ R, we introduce an LP
problem PR, C) as the restriction of P to this part. Partitioning the matrix as

C C const
R |Aw An| bo
R, AlO All bl
objlcg c | O

we have PR, C) explicitly written as

PRC): maximizech subject to AgoX < by, x> 0.

Let a pair of primal and dual optimal solutions to this problemx@, C) andy*(R, C),
respectively. Then, we have the following.

Theorem 2 If
() A1pX* (R C) < by (primal feasibility)and
(i) y*(R C)TAg1 > c] (dual feasibility)

are both satisfied, then the vectors obtained by filling zeros to the remaining paatsidR,
e, X =(X(RC),0)and y := (y*(R,C), 0), are optimal to P and its dual D, respectively.

Proof: Straightforward from the duality of LP problems. 1

Here, if we know correct partitionR; C) a priori so that (i) and (ii) in Theorem 2 are
satisfied, we can obtain an optimal solution to P by solving (usually) a much smaller problem
PR, C). Unfortunately, we do not know exactly which rgilwslumns can be thus eliminated
until we completely solve P. In the delayed-inclusion approach, we start wgphea sof
these sets, i.e., we tal® as a set of plausibly active constraints, a&da set of seemingly

4
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non-zero variables in optimality. Then, after solving the reduced problem, if some feasibility
conditions are not satisfied, we revive the violated yosfsimns and repeat the process all
over again. More precisely, the algorithm is as follows.

4 N
Algorithm DELAYED-INCLUSION.

Step 1. Take an arbitrary pair dRy andCy, and put R, C) := (Ry, Cy).

Step 2. SolveP(R, C), and obtainx* = x*(R, C) andy* = y*(R, C).

Step 3. If there exist rows violatingh;ox* < b;, add these rows tB.

Step 4. If there exists columns violating' Ag; > ¢;, add these columns t@.

Step 5. If neither violating rows nor columns exist’ andy* (supplemented with ap-
propriate O elements) solve P and D, respectively. Thus, output these and| stop.

Otherwise, go back to Step 2.
N J

In Step 2 above, R C) may be solved from scratch each time as a new LP problem. Or,
better than that, we can add the violated rows and columns to the optimal simplex tableau
at the previous iteration and solve the augmentd?] ®( more quickly. If PR, C) is always
feasible in DELAYED-INCLUSION, this clearly solves P. Specifically, ifB(R) is feasible,
it is easily proved that IR, C) is always feasible, sindg, € C andR2 R.

2.2.2 Application to RAP

In applying DELAYED-INCLUSION to C(RAP), we need to specify the starting pait Co)
of the sets of rows and columns. Rswe take constraints (2) and (3), which are always active
in any optimal solutions to C(RAP). Contrary to this, most of the constraints (4) are usually
inactive.

On the other hand, appropriate choice of star@gs not so clear. To determine this, we
make use of the solution obtained by REPEATED-HUNGARIAN. Indeed, with the solution
x = (x¢) from the algorithm we define the initial set of coluntBgas

Co:={(i, j,K) | X = 1, Vi, j,k}.

Clearly, in this case IR, Cy) is feasible, and therefore DELAYED-INCLUSION solves C(RAP)
correctly. Moreover, ifxis a ‘good’ approximation, it is expected that most of the columns

of Cy are actually non-zero in optimality. The lower bound obtained by solving C(RAP) this
way is denoted ag..

Example 2 Applying DELAYED-INCLUSION to the RAP of Example 1, we obtain a lower
bound z = 2385 after solving 7 LP problems of at mob8 x 21. In Table 1, we show the
numbers of rows and columns, as well as the objective value at each iteration. The same
lower bound is obtained by solving C(RAP) directly.
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Table 1: Behavior of DELAYED-INCLUSION.

Cycle #Row #Col 2z

1 14 8 2440
14 12 236.0
15 14 216.0
16 15 237.0
18 16 244.0
18 19 2385
18 21 2385

~NOo o~ WwWN

2.3 Lagrangian relaxation

With nonnegative multipliery = (y;;) associated with (4), the Lagrangian relaxation of
RAP is defined as

K n n &
LRAP() : minimize > > »'(c +¥)x - > > %
k=1 i=1 j=1 =1 =1
subjectto  (2), (3) and (5)

For a fixedy > 0, this can be decomposed irkondependent assignment problems.

APX(y) : minimize ZZ(Ciki X ©)
i—1 j=1
subject to lekj -1, Vi, @
=
D% =1 Vi ®)
i=1
x5 €101}, Vi, ]. 9)

Let the optimal objective values to LRAP(and AP(y) be z(y) andZ(y) respectively, and
consider thd_agrangian dual

minimize z(y) subject toy > 0.

The optimal objective value to this problem, denotedzasgives the lower bound by the
Lagrangian relaxation.

Let (u',vi,y") € R*K x R"K x R be an optimal solution to théual of C(RAP), wherau',
v andy' correspond to (2), (3) and (4), respectively. Then, we have the following.

Theorem 3 y' gives an optimal solution to the Lagrangian dual, That_[s,:z;(yT). More-
over, this coincides with the lower bound obtained by the continuous relaxation, i-ezz

Proof: Since LRAP{") is K independent assignment problems, all extreme points of the
feasible region of (2), (3), (5) are integral. Then this theorem follows from Theorem 10.3 of
Wolsey [13]. 1
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Thus, in what follows we write,, ., Z and AP instead ofz_ (or z ), (y), and AP(y"),
respectively. The lower bound is then given as

K n n
Zae= 2,27 D D0 (10)
k=1

i=1 j=1
Example 3 From the solution to C(RAP), we obtain the optinpalas

00 00 25 00
. |00 00 00 80
Y =1135 00 00 00|

00 225 00 00

For k = 1, we solve APwith cost matrix

480 80 85 600
_ . |1250 480 410 410
1._ 1 T oLy
C=C+7Y =315 970 580 80|’

590 455 460 560

and obtain the optimal matching as underlined above, with the corresponding objective value
Z! = 1265. Similarly, we have%Z= 1585, and from (10) obtain z 2385 again.

3 Pegging test

Let 6 be either 0 or 1, and defit@ap := Zgap — Zonp for the upper and lower bounds
obtained previously. By RARE = ) we mean RAP with one more constrajﬁt: 6 added,

and;(xi"j = ¢) denotes the lower bound to this modified problem. Theg(,xﬁ = 0) > Zrap,
no better solution thamzap can be expected by fixingj. = ¢, and thus we conclude that
X¢ = ¢ in optimality, wheres’ := 1 - 6.

Then, to evaluatg(x$ = 6) we introduce an assignment problem*s# = 5) as AP

with X = 6 added, and its optimal objective value is denoted'@g = 6). Then, from (10)
we have

z(ﬁ!(j = 0) :ZRAP+Zk(XI!(j = 0) —Zk'
Thus, we can fix at¢’ if
(4 = 0) - 2 > gap (11)

To determine if (11) is satisfied quickly, we consider gegging testor general BIP first.

3.1 Pegging test for general BIP

Here we briefly summarize some basic results on the pegging test [8, 15] for readers’
convenience. For simplicity of notation, let us consider the following BIP.

Q: minimizez(x) := c'x subjecttoAx = b, x; € {0,1}, V].

Let x* = (xjf‘) € R" be an optimal solution to Q with the objective valete:= z(x*). First,
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we relax the 0-1 constraints to the continuous
0<x;<1 Vi

The resulting LP is denoted as C(Q). Solving this yields an optimal solutisith the cor-
responding objective value:= z(x), which gives a lower bound to Q. Next, assume that we
have a feasible solutione R" to Q, and corresponding upper boung- z(X). Thus we have

z<7Z"'<z

Let an optimafeasible canonical forngFCF, [3]) of C(Q) be
Ei = Xgip) + Z aij Xj, (12)
jeN

jeN

whereN is the index set ohon-basic variablesandB(i) denotes the index of thi¢h basic
variable From optimality of this form we have

o) 2 0, V] e N,

O<b <1 Vi
For each we define
PUI = min{~aoj/aij | j € N.aij < 0}(1-b), (14)
PL := min{aoj/cxij | J €N, ajj > 0}b| (15)

Here, if the defining set is empty, we set fifd} := co. Then, we have
Theorem 4 [8]
(i) For basic variable x; in (12),
PU >Z-2z = X, =0, (16)
PL>Z-z = x3;,=1 (17)
(if) For non-basic variable x(j € N) in (13),

@ >Z2-2 = X' =0. (18)

3.2 Pegging test for RAP

By solving an assignment problem A@sing the Hungarian method, we obtain an optimal
assignmenk’ = (xITJ.) as well as an optimal solutiom, v') to the dual of AP (superscrift
is dropped in the remainder of this section), which is given as

n n
DAP: maximize Z U + Zvj (29)
i=1 j=1
subjectto u +Vv; < Gj, Vi, |. (20)
8
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Here, we writecij := Cjj + yfj and these satisfy thmomplementary slackness conditi@i
T TRV~
X; =1=u +v; =G (21)

However, to apply Theorem 4 to ARnd see if (16) - (18) are satisfied, we need an optimal
FCF of the problem. Here we explain how such an FCF can be reconstructed from the output
of the Hungarian method.

Corresponding tou(, v, we introduce an undirectdapartite graph Hu', v') consisting
of the left and right sets of nodas= {l,l,,...,l,}, R={ry,r,,...,ry} and the set of arcs
AU, v) = {(li.rj) € LXR| U + V] = ;). This includes gerfect matching M= {(li,r)) €
LxR] xITj = 1} in H(',Vv"). Now, if H(u',Vv") is unconnected, we can modifu’(v') by
executing the following steps repeatedly until finally the graph is connected. Let us consider
the connected component$ H(u', v'), and by compj we denote the component to which
node- belongs.

KProcedure DUAL-UPDATING R

Step 1. Decomposéd (u', v') into connected components.

Step 2. Finda := min{c;j — u/ - V! | (I;,r}) € Lx R, comp(;) # compg;)}, and let
(I, rj) be a pair where the minimum is attained.

Step 3. Modify (u', v') according to:

+
i

¥

.
V] < V[ +a, forall r; € compg;).

N J

U « u’ - a, foralll; e compg;),

Note that each component Bf(u’, v’) includes identical number of left and right nodes,
due to the existence of the perfect matchiMgThen, after DUALUPDATING the objective
value (19) remains unchanged, and (20) and complementary slackness condition (21) con-
tinue to be satisfied. Thus, the updatat ¢") is still optimal to DAP, and the number of arcs
in H(u', v") is increased at least by 1. After repeating DUAL-UPDATING at mmost. times,
we obtain a connectad(u’, v’).

Here, letT be aspanning treef H(u', v'). Without loss of generality, we assume that the
perfect matchingM is included inT. Now, the assignment problem AP can be written as

Bxg + Nx, =1,
CgXg + CNnXN = Z

whereB andN are the columns corresponding to basic and non-basic variables, which are
denoted axg and xy respectively. Here we take the variables corresponding to the arcs of

T as xg, and the remaining variables represex{s Then, theincidence matrixof AP is
correspondingly partitioned a8,N), and the cost vectorc) is written as €g, cy). If we

arrange the rows and columns of the tableau in the order of nodes and arcs as encountered
in the breadth-first travers¢l2] of T starting from node;, B necessarily becomes apper
triangular matrix which is easily inverted. Thus from the optimal matching obtained by the
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Hungarian method we h

Example 4 For AP with

a spanning tree is depic

the figure is the number
Then, rearranging rows

ave reconstructed an optimal FCF for AP as

Xg +BINxy = B™1,
(CN - CBB_lN)XN =Z- CBB_ll.

cost matrixC! given in Example 3, by the Hungarian method we
obtain the solution depicted in Fig. 1, wheré and \/} are shown at each node, and thick
lines show the matching M. Here(ti, v") consists of only one connected component, and
ted with (thick and thin ) solid lines. Also, attached at each node in

08 %0, @ #1215

r,) # 80

Figure 1: Optimal assignment fér= 1.

of steps as encountered in the breadth-first walk [12] fromnode |
and columns in ARhe basic and non-basic parts of the problem

are given as Tables 2 - 3. The objective line comes ftdm

Table 2: Upper triangular matrii in the initial simplex tableau.

node X2 X3 X43 Xa1  Xaa X1 Xosa

r2
K]
l4
r
g
I3
P

1
1 1

min

80 85 46.0 59.0 56.0 31.5 41.0

10
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Table 3: Non-basic paftl of the initial tableau.

X11 Xi4 X21 X2 X3 X322 X33  Xs4 X422 const

1 1 1 1

1 1 1

1 1

1 1 1
1 1 1

1 1 1 1

1 1 1 1

48.0 60.0 125.0 48.0 41.0 97.0 58.0 88.0 455 0.0

The matrix B of Table 2 can be easily inverted, and we obtain the non-basic part of the
optimal simplex tableau as shown in Table 4.

Table 4: Non-basic pai~N of the optimal FCF.

X11 X4 X1 X22  X23  X32 X33 X34 Xg2  const

1 1 1 1
1 1 -1 -1 -1
-1 -1 1 1 1 1 1 1
1 1 -1 -1 -1
1 -1 -1 -1 1
1 1 1 1
1 1 1 1

265 415 810 175 100 79.0 395 595 0.0 -126.5

Having an optimal FCF for AP, we can now apply the pegging test (Theorem 4) and fix
some variables as follows.

Example 5 With gap = Zgap - Z,,, = 5.5, we see all non-basic variables except fgp x

are fixed at 0. For basic variables, from (i) of Theorem 4, we fix variables gs=x¢, =

0,x3, = X5, = 1, and we have only 4 variables unfixed fork1. Similarly, from k= 2

we have 7 unfixed variables, and removing the fixed parts, we have a BIP with 11 variables
and 21 constraints. Solving this, we obtain an optimal solution to RAP with221, which

is identical to the value obtained by solving the original RAP (with 50 variables and 45
constraints) directly.

3.3 Animproved reduction method for RAP

A difficulty with the pegging test of section 3.2 is the reconstruction of an optimal FCF for
AP. For an assignment problem of sizg n, after obtaining the basis matri&and its inverse
B, computing all the elements & N can be quite expensive for problems with large
sinceN is a matrix of (2 — 1) x (n®> — 2n + 1). However, we show here that a very small

11
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portion of B~1N suffices to carry out the pegging test, which enables us a drastic speed-up of
computation.

Let us consider the optimal FCF given by (12) and (13). Fromuthienodularity[1] of
the codficient matrix B, N) in the assignment problem we have the following fori ahd .

Qi € {—1, 0, 1}, VI,J S N, (22)
bi € {0, 1}, Vi. (23)

Let
N*:={jeN|ao>Z-2, N :={je N|ag <Z-2. (24)

Then, we have

Theorem 5

() b=1land{jeN|aj=1=0 = x4,

(i) b=0and{je N |a;=-1} =0 = X}

=1,

i =0

Proof: (i) From (15),PLi = minfag; | @ij = 1,] € N} = min{PL’, PL"}, wherePL* :=
minfao; | @ij = 1,j € N*}, respectively. By definition oN*, we havePL > z -z and
PL- <z-z Then,PL >z-z & {j € N | aj = 1} = 0; hence from Theorem 4, (i) is
proved. (ii) is proved analogously. 1

An important implication of this theorem is that, in carrying out the pegging test, we only
need columns iMN~, and see ifj € N~ | ;; = £1} = 0 is satisfied. FrequentlyiN~| is much
smaller thariN|, and if this is the case pegging test by Theorem 5 is far more faster than the
direct application of Theorem 4. For the example of Section 3.2, we only need the column of
X42 10 obtain the same pegging result.

4  Virtual pegging approach

The usefulness of the pegging test depends on the gap between the upper and lower
bounds. If the gap is not small enough, th&eetiveness of the method is limited, since
the size of the problem will not be reduced much in such a case. In the present section, we
introduce avirtual pegging test in order to cope with thidiitulty.

4.1 The principle

For the problem Q of Section 3.1, pegging test works with a pair of upper and lower
boundsz andz satisfying

z<72 <z (25)

However, we may perform the pegging test using an arbitrary \akithin [z Z] as a hypo-
thetical upper bound. Such &rs said to be drial value. As the result of this pegging with

12
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andl, somex;’s will be fixed either at O or 1. But this pegging is not guaranteed to be correct
becausé is not necessarily a true upper bound. Let the index sets of variables, which are
‘fixed’ at 0 and 1 by the above procedure, Bgl) andF,(l) respectively. Then, we have the
following reduced problem

Q():  minimizec' x subject toAx = b, x; € {0, 1}, and
x; = 1,if j € F1(l), x; = 0,if j € Fo(l).

The optimal objective value to this problem will be denoted’asind is referred to as the
realizationfor the trial valud. If Q(l) is infeasible, we put* := co. Then, we have

Theorem 6 [16] For an arbitrary trial value 1> zand its realization 2, the followings hold.
N 1>z=z =7,
(i)l <zZ=7>7,

(i) | >z =z =7~

4.2 A virtual pegging procedure

To apply the virtual pegging method to RAP, we prepare a parameted, which we call
thevirtual gap, such thatr < gap:= zrap—2,,- We present a procedure which reduces RAP
to a small BIP, and by solving it we often obtain an exact solution to the original problem.
The procedure is as follows.

KProcedureVIRTUAL-PEGGING. h

Input: Zgap, Z, ., and optimal FCFs for AP(k = 1,..., K).

Parameter: Virtual gapa.

Step 1. Apply the pegging test (Theorem 5) to each of‘Afth trial valuez,, .+ a.
Step 2. Eliminate the fixed variables from RAP and obtain a reduced BIP.

Step 3. Solve the BIP using a MIP solver, and obtain a feasible solutidn RAP with

L the corresponding objective val@e Output (*, ) and stop. )

Actually, 7 is the realization for the trial valug,, .+ a. Then, by Theorem 6, i <

Zoppt@ the solution is proved optimal. Evenzf > ZoppT @ it is often the case that < Zgap,
and then we have a better upper bound thap. Or, we may retry VIRTUAL-PEGGING
with « increased until optimality of the solution is proved.

13
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5 Numerical experiments

This section gives the results of numerical experiments conducted to evaluate the perfor-
mance of the proposed method. We implemented REPEATED-HUNGARIAN, DELAYED-
INCLUSION and VIRTUAL-PEGGING procedures in ANSI C language, and carried out
computation on an Dell DIMENSION 8250 computer (CPU: Pentium4, 3.40GHz, 2.00GB
RAM). To solve LP and BIP problems, CPLEX 11.1 was used on the same computer.

5.1 Design of experiments

The instances were prepared in the following way. Fir$tc;)|aninalcostcioj Is assumed to

be uniformly random over the integer interval [1,1000], and the q‘g)stt k-th repetition is
determined as a uniformly random integer over [Floor, Ceil], where

Floor := maxCjj — 1000(1- o), 1}, Ceil := min{c; + 1000(1- o), 100G.

Here,o denotes the parameter representing the degreeroélationbetween the costs over
k=1,2,...,K. We tried three cases:

e Uncorrelated (UNCOR)> = 0.0.
e Weakly correlated (WEAK)o = 0.3.
e Strongly correlated (STRONG): = 0.6.

In Figure 2 we plot €}, ¢;) for each of these correlation types.
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Figure 2: Correlation betweenj{, c).

5.2 A numerical example

For an instance with = 120, K = 12 ands = 0.3, we obtained bounds agap = 27713
andz,,, = 271997. Assuming the virtual gap ef = 5, 103,560 (out of 173,800) variables
were fixed at 0, and removing these we got a BIP with 69240 variables and 17147 constraints.
Using CPLEX we solved this and obtained a solution w#ite 27205, which was much better
thanzzap. However, this solution was not proved optimal, siate Z> «a. Then, we repeat
VIRTUAL-PEGGING with o increased ter = 10. We obtained? = 27205 again, and this
was proved to be optimal, since we hafe z < a.

14



5.3 Result of experiments

Table 5 shows the result of computation of the upper and lower boundsdz,, ).
Each row is the average over 10 randomly generated instances, and in additaniothe
columns stand for the followings: Gol, ‘# Row and ‘#Cycle stand for the maximum num-
ber of columns and rows in DELAYED-INCLUSION, and the number of iterations (Steps 2 -
5) repeated therein. ‘CRUs the CPU time in seconds to computandz, andgap:=z—-z

O©CoO~NOUTAWNPE

Table 6 summarizes the result of VIRTUAL-PEGGING with= 5 for the same instances

as in Table 5. We show here the numbers of variables fixed at 0 andFix{'#&nd ‘#Fix;’,

resp.), the size of the reduced BIPC#l' and ‘#Row, resp.), the optimal objective value
(z*) and the total CPU time (CPUr the time to solve the reduced BIP problem) in seconds.
The column of ‘4nt’ gives the number of instances (out of 10) where integer solutions were

obtained in DELAYED-INCLUSION. In such a case, we pli#; = nK, #FiXo = n’K —nK,

and #ol=#Row=0 in computing the averages. Also, the column @ gt gives the number

of instances where the solution was proved optimat (Z — Zoap):

Table 5: Upper and lower bounds

o n K ZRAP #Row #Col #Cycle Zap Gap CPY
0.0 200 4 7054.4 1604.2 2471.1 4.3 7047.1 7.3 0.27
8 14199.6 3234.4 5001.7 5.6 14149.1 50.4 0.79
12 21504.9 4891.6 7697.3 7.3 21354.0 150.8 1.67
400 4 7430.6 3202.1 4882.4 4.3 T7427.8 2.8 1.27
8 14859.6 64285 9903.3 5.8 14826.4 33.1 3.58
12 22282.7 9677.2 15013.8 6.3 22194.3 88.4 5.93
600 4 7772.8 48019 7350.2 44 7769.5 3.3 3.00
8 15589.4 9624.3 14806.8 5.8 15568.4 21.0 7.49
12 23455.7 14472.1 22408.4 7.0 233979 57.7 14.13
0.3 200 4 9042.2 1606 2481.2 4.2 9026.6 15.6 0.29
8 18187.2 3251.3 5108.1 6.3 18062.2 125.0 0.87
12 27709.4 4944.3 7874.8 8.0 27355.7 353.6 2.21
400 4 94775 3206.5 4951 4.6 9467.6 9.9 1.32
8 18995.3 6446.8 10034.2 6.1 18926.1 69.1 3.42
12 28593.8 9730.3 15197.3 7.5 28402.1 191.6 7.33
600 4 98154 4806  7323.1 49 9809.5 59 3.04
8 19674.4 9642.4 14976.3 6.2 19629.7 44.7 7.83
12 29699.1 14523.2 22654.5 7.5 29591.3 107.7 18.38
06 200 4 9842.4 1618.4 2521.2 50 9807.0 354 0.32
8 20135.7 3322.6 5292.1 8.1 19827.2 308.4 1.52
12 31137.1 5158.7 8209.3 8.8 30284.4 852.6 8.05
400 4 10216.9 3216.4 5025.3 5.2 10201.4 15.5 1.45
8 20772.8 6509.6 10304.1 7.0 20613.2 159.5 5.30
12 31402.7 9899.5 15747.1 8.2 31003.3 399.3 18.61
600 4 10599.6 4814 7404.1 5.3 10585.6 14.0 3.13
8 21326.1 9700 15136.6 7.5 21234.0 920 11.14
12 32247.8 14672.4 23079.2 9.0 32006.2 2415 29.84
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Table 6: Reduction and CPLEX

o n K #nt #Fixg #Fixy #Col  #Row Z CPU #Opt
0.0 200 4 10 159200.0 800.0 0.0 0.0 70471 02 10
8 7 3177923 12469  960.8 1629.3 141494 11 10
12 5 476051.1 1507.4 24415 4087.8 213545 25 10
400 4 10 638400.0 1600.0 0.0 0.0 74278 12 10
8 7 1274708.0 2368.4 2923.7 45122 148265 45 10
12 9 1914132.0 4377.3 14912 22725 221943 65 10
600 4 10 1437600.0 2400.0 0.0 0.0 77695 30 10
8 9 2873661.0 43475 1991.6 2849.6 155684 82 10
12 8 4308131.0 59440 6024.9 8511.9 23398.0 182 10
03 200 4 9 159118.8 7498 1344 2380 90269 03 10
8 7 317902.4 12759  821.7 14309 180625 0.9 10
12 5 476232.3 1547.8 22199 3756.4 273562 41 10
400 4 10 638400.0 1600.0 0.0 0.0 94676 1.3 10
8 9 1276229.0 29348  836.7 1340.6 189262 3.6 10
12 6 1911771.0 3220.2 5009 7913.3 284024 123 10
600 4 10 1437600.0 2400.0 0.0 0.0 98095 30 10
8 9 2874012.0 4371.3 1616.3 24295 19629.7 87 10
12 4 4301969.0 3315.8 14715.3 21826.1 295915 30.3 10
0.6 200 4 9 159124.6 749.4 126 2219 9807.0 0.3 10
8 2 316977.4 690.2 23324 3958.1 19829.1 150 10
12 0 474601.2 5929 48059 7772.2 30303.4 726.8 0
400 4 9 638136.7 14716 3917 6379 102014 14 10
8 2 1272516.0 1130.4 6353.2 101369 206135 7.9 10
12 0 1906622.0 809.9 12568.5 19437.9 31005.9 300.8 9
600 4 10 1437600.0 2400.0 0.0 0.0 105856 3.1 10
8 4 2868446.0 2251.0 9302.8 13956.6 212343 17.4 10
12 2 4299009.0 2069.6 18921.3 27765.2 32007.1 139.3 10

From these tables, we observe the followings.

1. ForK = 4, we often obtain an optimal solution by solving C(RAP) via DELAYED-

INCLUSION.

2. Although the gap between the upper and lower bounds increases with the problem size

(n andK) and the degree of correlationr), the actual optimal valuez{) is usually
very close to the lower bound{, ), and thus the virtual pegging is veryfective to
the instances tested here.
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. Witha = 5, VIRTUAL-PEGGING reduces problem size to the level which is tractable
by MIP solvers such as CPLEX, and by solving the reduced BIP, except for some cases,
we obtain optimal solutions within a few minutes. Even if the solution is not proved
optimal, we usually have approximate solutions which are much better than the original
repeated Hungarian solution.



5.4 Weakness of the pegging approach

VIRTUAL-PEGGING remains some weakness for instances with relatively smeaiid
largeK ando. Table 7 compares VIRTUAL-PEGGING against the direct solution of RAP
by CPLEX 11.1. Each row is again the average over 10 random instances, and ‘gap’ is again
ZrAP — Zonp In CPLEX, computation was truncated at the time-limit of 1800 CPU seconds,

and in such a case we took the incumbent objective value at that timead CPU=1800 in
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Table 7: Solution by CPLEX 11.1

deriving averages. The findings from this table is as follows.

VIRTUAL-PEGGING CPLEX
o n K 7Gap 7 CPU #Opt z CPU

00 40 4 0.0 6390.7 0.01 10 6390.7 0.10

8 895 13297.8 0.09 6  13294.7 4.52

12 11645 20369.8 8.21 0 202932 112.35

80 4 16 67645 0.05 9 6764.5 1.37

8 289 136115 018 10 136115 4.08

12 263.2 20688.0 6.08 7  20687.7  58.88

120 4 0.0 68055 0.10 10 68055 5.78

8 6.5 13796.5 032 10 137965  12.92

12 1062 20847.7 440 10  20847.7  54.90

03 40 4 0.0 80138 0.01 10 8013.8 0.10

8 4411 167159 0.13 4 166040  17.43

12 1961.4 26778.1 3.33 0  25773.8 297.44

80 4 0.0 8618.0 0.05 10 8618.0 1.01

8 1282 17372.2 2.51 6  17371.9  36.70

12 7479 266421  60.84 0 266352 301.27

120 4 23 87813 0.12 10 8781.3 7.28

8 69.9 178557 056 10 178557  23.39

12 3169 270211 7054 1 27021.0 190.37

06 40 4 603 8679.1 0.03 8 8675.9 0.31

8 16965 19728.3 0.30 0  18623.3 165.33

12 6152.6 35406.5 2.07 0 312456 1808.62

80 4 203 91380 0.07 10 9138.0 1.32

8 465.1 18888.1  28.76 0 188728 204.40

12 1850.2 30141.2 1090.83 0  29831.4 1816.65

120 4 0.0 9503.2 0.12 10 9503.2 6.46

8 208.4 195169  32.21 4  19516.6 253.80

12 998.3 29983.2 1107.43 0  29976.9 1766.79

The findings from this table is as follows.

1. In these instances witlh < 120, the gap between the optimal objective value and the
lower bound ¢ - z_, ) is often larger tham(= 5), and thus, VIRTUAL-PEGGING
fails to produce a solution with optimality proved. If we retry VIRTUAL-PEGGING
with an increased, we may obtain optimal solutions.

2. Evenin such a case, we obtain feasible solutions #itfose to the optimal in shorter

time than the direct application of CPLEX.
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6 Conclusion

We formulated the repeated assignment problem, and presented an approach to solve this
problem. The proposed methods include REPEATED-HUNGARIAN, DELAYED-INCLUSION,
and VIRTUAL-PEGGING. Through numerical experiments, we found that the developed
method was able to reduce the size of the problem, often significantly, and the reduced BIP
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can be solved using commercial or free MIP solvers. As the result, we were able to solve
RAP with up ton = 600 andK = 12, often with the proof of optimality. The method remains
some weakness for problems with relatively snrmedind largeK, where direct application of

MIP solvers can be competitive solution strategy.
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