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Abstract
We present motion planning for dexterous manipulation

by whole arm grasp system based on switching contact
modes. Motion planning for such a system should consider
changing dynamics and kinematics according to the con-
tact modes. We systematize the properties of the manipula-
tion system by taking account of contact dynamics and kine-
matics, and derive the conditions to be satisfied in motion
planning. The conditions give the restrictions of the feasi-
ble contact mode and the number of contact points. Noting
that the manipulation system which involves continuous dy-
namics and discrete change of contact modes belongs to a
class of hybrid system, we propose an algorithm of global
motion planning based on a hybrid control perspective. We
aim at finding a feasible joint torque trajectory and a se-
quence of contact modes to move the object to an object
final state for given switching times and object state trajec-
tory. The proposed planning algorithm mainly consists of
planning the object trajectory by a randomized approach
using an object nominal trajectory, and constructing sub-
goals which satisfy the proposed conditions by solving an
inverse problem. We show the validity of the planner by
simulating manipulation by whole arm grasp system.

1 Introduction
Manipulating objects by hands, we dexterously use dif-

ferent contact modes such as rolling and sliding contacts
unconsciously. Utilizing different contact modes according
to the manipulation task can raise the manipulation skill
with the hands. The primary motivation of our work is to
manipulate objects by a multi-fingered robot hand utiliz-
ing different contact modes. In this paper, we discuss mo-
tion planning to realize such a manipulation as mentioned
above.

Most work on motion planning has been devoted to
the problem of deciding a collision-free path that con-
nects a given start and goal configuration for mov-
able objects or manipulators by searching a configuration
space while satisfying geometrical constraints imposed by
obstacles[1],[2],[7]. This work does not deal with any dy-
namics for robots or objects. In other words, the conven-
tional motion planning is based on a geometrical approach.

Recently there have been some work on motion planning
that determines control inputs to derive a robot from an
initial state to a goal state while avoiding obstacles and
obeying dynamics of robots[8],[9]. There is less work on
planning for the motion occurring contacts between objects.
Such motion planning is a complicated problem because of
the nature of the contact such as rolling and sliding.

Work on manipulation by a multi-fingered robot hand
has attracted attention. Most work has been devoted to
the instantaneous kinematic and dynamic analysis of grasp-
ing and dexterous manipulation, assuming that there is no
change of contact modes between hand and objects during
a task. In contrast to the conventional manipulation, we
should take account of changing dynamics and kinematics
of the manipulation system according to the change of con-
tact modes and verify the dynamical and kinematical prop-
erties of such a manipulation system in order to achieve
our goal. Trinkle and Hunter[13] showed global motion
planning for quasi-static manipulation by searching feasi-
ble contact configurations such as edge-edge, edge-vertex
contacts and so on. However, since contacts are restricted
to frictionless contacts, the planner can not be applied to
motion planning of manipulation with changing contact
modes. Cherif and Gupta[4] presented global motion plan-
ning for quasi-static fingertip manipulation with changing
contact modes and discussed a planning algorithm based on
the idea of an inverse finger motion problem. The idea mo-
tivated us to consider the inverse problem for the motion
planning problem of whole arm grasp system. However
the use of their algorithm is limited because they discussed
the transition of contact modes without considering contact
dynamics. A crucial issue for motion planing of the ma-
nipulation system with switching contact modes is to find
the feasible trajectories (motion and joint driving torques)
which satisfy the dynamical and kinematical constraints at
contact points between the hands and object. In addition,
designing an efficient algorithm for exploring high dimen-
sional search space is required since we should deal with
the state space of the manipulation system.

For a system with changing dynamics behavior, the state
space of manipulation system consists of multiple parti-
tions, each of which corresponds to a contact mode. Each



partition is governed by a different set of differential equa-
tions. In order to complete successful manipulation, it is
necessary to plan transitions of the contact modes. Since
the manipulation system can be modeled by a discrete event
such as a contact mode and continuous dynamics, the sys-
tem belongs to a class of hybrid system[3],[10]. Most work
on the hybrid system is the stability and modeling from the
view of control theory. Zefran[15] applied the idea of hy-
brid system to the study of grasp gaits. To my knowledge,
there is no study about motion planning for dexterous ma-
nipulation with switching contact modes from a hybrid con-
trol perspective.

In this paper, we first develop mathematical conditions
to be satisfied for motion planning, based on dynamics and
kinematics of manipulation system. These conditions give
restrictions for feasible contact modes and the number of
contact points. We then describe the basic ideas of ma-
nipulation planning, which is defined as “given initial and
goal object states, it is to find a joint torque trajectory, us-
ing rolling and sliding contacts”. The proposed algorithm is
simplified using a randomized technique. Finally we apply
the ideas to the simulation of a whole arm grasp system.

2 Problem formulation

2.1 Dynamic model

We derive the dynamic model of whole arm grasp system
in space as shown in Figure 1. We assume that each link
of each hand (arm) has one contact point with an object at
most, and each revolute joint has one degree of freedom.
Suppose there are nC contacts, consisting of nR rolling
contacts and nS sliding contacts. Let the subscripts N ,
T and U denote the inward normal and two tangential di-
rections spanning tangent plane at the contact point on the
object’s surface, and S and R denote sliding and rolling
contacts, respectively. A contact frame is assigned to each
contact point and is positioned with its origin at the contact
point and with its axes aligned with N , T and U , respec-
tively. We denote ith contact point by subscript i.

The dynamic equation of motion of rigid object can be
written as

Moq̈ = GNfN + GT fT + GUfU + go (1)

where q̈ is the 6-vector of linear and angular acceleration
of the center of mass of the object, M o is the 6 × 6-mass
matrix of the object, go is external wrench applied to the
object, and fN , fT and fU are the normal and tangential
contact force vectors expressed in the corresponding con-
tact frame. GN , GT and GU are wrench matrices associ-
ated with fN , fT and fU , respectively.

The derivation of the motion equation of the rigid hand
parallels that of Equation(1). Let nθ be the number of joints
in the hand, and τ be the nθ-vector of applied torques for
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Figure 1: General whole arm grasp systems.

a revolute joint, respectively. The motion equation of the
hand can be written as

Maθ̈ = τ − JT
NfN − JT

T fT − JT
UfU − ga (2)

where θ̈ is the nθ-vector of joint accelerations. J T
N , JT

T and
JT

U are the hand Jacobian matrices associated with f N , fT

and fU , respectively. M a is the nθ × nθ-inertia matrix
of the hand. ga is the vectors of joint torques caused by
external wrenches and velocity product wrenches.

According to Coulomb’s law, the contact forces at rolling
contacts lie within the boundary of its corresponding fric-
tion cone. The constraint on the ith contact forces can be
written as nonlinear inequalities√

f2
TRi + f2

URi ≤ µifNRi (3)

where µi is the coefficient of friction. In order to linearize
Equation(3), the friction cone is approximated by the fric-
tion pyramid circumscribing the friction cone as shown in
Figure 2. The friction pyramid can be written as

−µifNRi ≤ fTRi ≤ µifNRi (4)

−µifNRi ≤ fURi ≤ µifNRi (5)

Since the contact forces at both rolling and sliding contacts
must be non-tensile, the normal contact forces satisfy

fNRi ≥ 0, fNSi ≥ 0 (6)

Summing Equations(4),(5),(6) for all contacts yields

BµfA ≥ 0 (7)

where

fT
A =

[
fT

NS , fT
NR, fT

TR, fT
UR

]
∈ �3nR+nS

Bµ =


 ES 0

0
UR ER

UR −ER




UR = diag [· · · ,−µi, · · ·] ∈ �nR×nR
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Figure 2: Friction cone and friction pyramid model.

ES and ER are nS × nS and nR × nR unit matrices, re-
spectively. 0 is zero vector or matrix with appropriate di-
mension.

On the other hand, the contact forces at sliding contacts
lie on the boundary of the corresponding friction cone and
its tangential forces act on the object in the opposite di-
rection to the motion of object relative to the hand at the
contact point. The direction of relative motion is given by

ûi =
1√

(vTSi)
2 + (vUSi)

2

[
vTSi

vUSi

]
(8)

where vTSi and vUSi ∈ � are relative sliding velocities
in the direction of T and U with respect to the ith contact
frame, respectively. Therefore the tangential contact forces
in the ith contact frame are given by

fTSi = UTSifNSi, fUSi = UUSifNSi (9)

where

U•Si =
−µiv•Si√

(vTSi)
2 + (vUSi)

2
, • ∈ {T ,U } (10)

Summing Equation(9) for all sliding contacts yields

fTS = UTSfNS ∈�nS , fUS = UUSfNS ∈�nS

(11)
where

U•S = diag[· · · , U•Si, · · ·] ∈ �ns×ns , • ∈ {T ,U }
Substituting Equation(11) into Equations(1),(2), the mo-

tion equations and friction constraints can be rewritten for
all contacts as

Moq̈ = GAµfA + go (12)

Maθ̈ = τ − JT
AµfA − ga (13)

BµfA > 0 (14)

where

GAµ = [GNS +GTSUTS +GUSUUS , GNR, GTR, GUR]

∈ �6×(3nR+nS)

JT
Aµ =

[
JT

NS+JT
TSUTS +JT

USUUS , JT
NR, JT

TR, JT
UR

]
∈ �nθ×(3nR+nS)

GNS , GTS and GUS are 6 × nS wrench matrices in
the normal and tangential direction for sliding contacts.
GNR, GTR and GUR are 6 × nR wrench matrices in
the normal and tangential direction for rolling contacts.
JNS , JTS , JNR, JTR and JUR are defined similarly.

2.2 Kinematic model
The ith contact velocity on the object surface

with respect to the ith contact frame is given by
[GNi GTi GUi]T q̇. Similarly, the ith contact velocity on
the link surface is given by [J T

Ni JT
Ti JT

Ui]
T θ̇. Therefore,

the ith relative velocity, vNi, vTi, vUi ∈ �, in the N, T ,
and U direction with respect to the ith contact frame can be
written as

 GT
Ni

GT
Ti

GT
Ui


q̇ −


 JNi

JTi

JUi


θ̇ =


 vNi

vTi

vUi


 (15)

As long as the contacts between the hand and the object are
maintained, the normal relative velocities for both rolling
and sliding contacts become

vNRi = 0, vNSi = 0 (16)

In addition to Equation(16), the tangential relative veloci-
ties at the rolling contact must satisfy

vTRi = 0, vURi = 0 (17)

Imposing Equations(16), (17) on Equation(15), and sum-
ming it for all contacts yields

GT
Aq̇ − JAθ̇ = 0 (18)

GT
•S q̇ − J•S θ̇ = v•S , • ∈ {T ,U } (19)

where

GA = [GNS , GNR, GTR, GUR] ∈ �6×(3nR+nS)

JT
A =

[
JT

NS , JT
NR, JT

TR, JT
UR

]
∈ �nθ×(3nR+nS)

3 Properties of manipulation system
We cannot always plan arbitrary manipulation for a given

manipulation system. Feasible manipulation is restricted by
the property of kinematics and dynamics of the manipula-
tion system. In this section, we show four properties of
manipulation system based on kinematics and dynamics,
and derive conditions which should be considered in mo-
tion planning.

The motion of object and hand is constrained so as to sat-
isfy kinematics given by Equation(18). The issues which
should be considered in motion planning concerning ma-
nipulation kinematics are whether, for a current contact
mode, (i)there exists feasible joint velocity, θ̇, for a de-
sired object velocity, q̇, and (ii)the object velocity, q̇, is
uniquely determined for a given joint velocity, θ̇. These
two problems depend on the properties of matrices GA and
JA [6],[12].



Definition 1 A manipulation system is said to be kine-
matically manipulable if the hand Jacobian, J A ∈
�(3nR+nS)×nθ , is full rank and 3nR + nS ≤ nθ.

If a manipulation system is kinematically manipulable for a
current contact mode, we can find a joint velocity, θ̇, which
can accommodate an arbitrary object velocity, q̇.

Definition 2 A manipulation system is said to be kine-
matically determinate if the wrench matrix, GA ∈
�6×(3nR+nS), is full rank and 3nR + nS ≥ 6.

When a manipulation system is kinematically determinate,
the object velocity, q̇, is uniquely determined for a given
joint velocity, θ̇. Otherwise there are infinite solutions for
Equation(18), and the object cannot be manipulated by the
joint motion.

On the other hand, manipulation dynamics is determined
by Equations(12)∼(14) and acceleration kinematics ob-
tained by differentiating Equation(18)

GT
Aq̈ − JAθ̈ + Ġ

T

Aq̇ − J̇Aθ̇ = 0 (20)

The issues which should be considered in motion planning
concerning manipulation dynamics are whether (i)there ex-
ists feasible joint driving torque, τ , to generate a desired
object acceleration, q̈, and (ii)we can uniquely predict an
object acceleration, q̈, for a given joint driving torque, τ .

Definition 3 A manipulation system satisfying the follow-
ing conditions (i),(ii) and (iii) simultaneously is said to
be dynamically manipulable. (i)a manipulation system is
kinematically manipulable, (ii)GAµ ∈ �6×(3nR+nS) is full
rank and 3nR + nS ≥ 6 and (iii)JAµ ∈ �(3nR+nS)×nθ is
full rank.

When the condition(i) holds, the hand Jacobian J A be-
comes row full rank and there exists feasible joint acceler-
ation, θ̈, satisfying Equation(20) for an arbitrary q̈. In or-
der to exist contact force, f A, satisfying Equations(12),(14)
for an arbitrary q̈, the manipulation system should sat-
isfy the condition(ii). In addition, if condition(iii) holds,
joint torque, JT

AµfA, which can balance with any contact
force, fA, can be generated. Since a joint driving torque,
τ , can be obtained by substituting θ̈ and fA into Equa-
tion(13), we can get an unique τ which generate q̈ if the
conditions(i),(ii) and (iii) hold simultaneously. Therefore
it is necessary that a manipulation system should be dy-
namically manipulable so that we could find a joint driving
torque generating a desired arbitrary object acceleration in
motion planning.

Contacts between rigid bodies generate complementar-
ity constraints on relative accelerations and the correspond-
ing contact forces[11]. The problems on the existence of
unique object acceleration for a given joint torque can be

discussed by reducing the problems into a linear comple-
mentarity problem(LCP) which can be written as[14]

fA ≥ 0, a = AfA + b ≥ 0, fT
Aa = 0 (21)

where

A = [GT
A, − JA]M−1[GT

Aµ, − JAµ]T

b = [GT
A, − JA]M−1[gT

o , (τ−ga)T ]T

+[Ġ
T

A, − J̇A][q̇T , θ̇
T
]T

a = [aT
NS , aT

NR, aT
TR, aT

UR]T

M = diag[M o, Ma]

a ∈ �3nR+nS is a relative acceleration with respect to a
contact frame. The LCP has unique solutions a and f A for
all b if and only if the matrix A is a P-matrix[5]. Using this
theory, we make a definition for uniqueness of dynamics as
follows.

Definition 4 A manipulation system is said to be dynami-
cally determinate if the matrix A is a P-matrix.

We notice that the vector b is a function of τ . If a manipula-
tion system is dynamically determinate, contact forces, f A,
can be uniquely determined for an arbitrary joint torque, τ .
In addition an object acceleration, q̈, can be uniquely deter-
mined for the given f A using Equation(12). In other words,
it is found that such a manipulation system does not become
indeterminate or inconsistent for a given joint torque.

We classified the properties of manipulation system
based on kinematics and dynamics. Among these proper-
ties, the “kinematically determinate” and “dynamically de-
terminate” manipulation systems guarantee that manipula-
tion along with the desired object trajectory can be realized
by applying joint velocity and joint torque which are ob-
tained in motion planning, respectively. Therefore the va-
lidity of solutions for forward problem can be guaranteed.
On the other hand, the “kinematically manipulable” and
“dynamically manipulable” manipulation systems guaran-
tee that there exist feasible joint velocity and joint torque to
accommodate the arbitrary object motion. Therefore the
validity of solutions for inverse problem can be guaran-
teed. In this paper, by changing contact modes, we plan
the motions of the manipulation system to guarantee the
valid solution for both forward and inverse problems. We
can summarize the conditions on kinematics and dynamics
mentioned above and the conditions on the contact number
shown in the section 2.1 by the following equations. These
conditions are used to decide the feasibility of manipulation
in the motion planning next.

nc = nR + nS ≤ nθ (22)

6 ≤ 3nR + nS ≤ nθ (23)

rank(JA) = 3nR + nS (24)



rank(JAµ) = 3nR + nS (25)

rank(GA) = 6 (26)

rank(GAµ) = 6 (27)

A ∈ P − matrix class (28)

4 Motion planning

4.1 Hybrid system

We should notice that manipulation dynamics changes
according to the change of contact modes. The manip-
ulation system with switching contact modes consists of
multiple subsystems corresponding to each contact mode
as shown in Figure 3. The transition between subsystems
occurs by switching a contact mode, and the dynamics and
kinematics change accordingly. In other words, since the
motion of such a manipulation system can be represented
by a sequence of contact mode which can be expressed as
discrete events as well as time continuous motion, we can
regard the system as a hybrid system.

Subsystem C

Subsystem A

Subsystem B

Figure 3: Transition between subsystems.

In order to plan the manipulation based on switching
contact modes, we consider a state×time space of the ma-
nipulation system corresponding to the contact mode when-
ever that is switched, as shown in Figure 4. Let the state
be the positions and velocities of the manipulation system.
The manipulation time, [0, tgoal], is divided into tj : 0 <
t1 < · · · < tN+1 =tgoal by the number of switches, N . Let
m be the dimension of the manipulation system. The state,
xj ∈Xj ⊂�m, of the manipulation system on [tj , tj+1] is
governed by dynamics and kinematics for the state space,
Xj , of the manipulation system, corresponding to a contact
mode, Mj . The state trajectories which connects states
xj(tj) with xj(tj+1) on [tj , tj+1], j = 0, . . . , N and the
corresponding joint torque trajectories are determined so
as to satisfy Equations(22)∼(28). At a switching time,
tj+1, the state space changes from Xj to Xj+1 and the state
changes from xj(tj+1) to xj+1(tj+1) continuously.

We should decide the following three components in mo-
tion planning for the manipulation system with the property
mentioned above.

(i) The sequence of contact modes, {Mj}N
j=0.

(ii) The switching times, {tj}N
j=1.

(iii) The state trajectories of manipulation system and the
joint torque trajectories on each interval [tj , tj+1].

tgoal

xj

x0

x0

xN ∈�m

(0)

t

t

t
tN

xN xN

xj
xj

x0
0

t1

tj
tj+1(t1)

(tj) (tj+1)

(tN ) (tgoal)

Figure 4: A sequence of state×time space of manipulation
system corresponding to contact modes.

Since it is quite a difficult task to find all three compo-
nents of optimal solution, we can find an approximate solu-
tion by defining the motion planning problem as; “Given
the switching times and each object state trajectories,
q(t), q̇(t), t ∈ [tj , tj+1], j = 0, . . . , N , find feasible joint
trajectories of motion and driving torques which connect
an object initial state, (q(0), q̇(0)), with an object goal
state, (q(tgoal), q̇(tgoal)), utilizing rolling and/or sliding
contacts.” Note that the object trajectory is assumed to be
specified in motion planning based on an inverse problem.
However this trajectory is modified iteratively so that the
object can be actually manipulated to the goal. The algo-
rithm for the three components are organized in the flow
chart in Figure 5. We will next describe each of these com-
ponents and the organization.

Start

Iterate for feasible contact modes

Yes

No

Object Trajectory Planner

Inverse Problem Solver

Select Optimal Motions

Stop

q(t), q̇(t) t ∈ [tj , tj+1]

Subgoal is generated

Iterate by itmax

Iterate until object reaches q(tgoal), q̇(tgoal)

Assign q(t), q̇(t) at t = 0, tgoal

Mj

(a)

(b)

(c)

Figure 5: An algorithm of motion planning.

4.2 Algorithm
The proposed motion planning, as shown in Figure 5,

consists of (a) a planning of object state trajectory, q(t)



and q̇(t), on [tj , tj+1], (b) an execution of the inverse prob-
lem for the given object state trajectory and a generation
of subgoals (the contact modes which make manipulation
feasible on [tj , tj+1] and the states of manipulation system
at the switching time, tj+1), and (c) a selection of desir-
able trajectories. The (a) and (b) are executed iteratively
whenever the assignment of switching time, and the sub-
goals at each switching time are generated consequently.
Subgoals which connects an object initial state with an ob-
ject goal state are finally obtained, and the transition of ma-
nipulation system are expressed by contact mode transition
graphs. We will next discuss (a),(b) and (c) in detail.

At a switching time, tj , a next switching time, tj+1,
is assigned and the object state trajectory, q(t), q̇(t), on
[tj , tj+1] are planned in (a). Since an object state×time
space is generally high-dimensions, we try to reduce the
dimension of search space by utilizing an object desirable
rough position trajectory, q̃(t), t ∈ [0, tgoal], which con-
nects an object initial position, q(0), with an object goal
position, q(tgoal). The rough object position trajectory is
called a nominal trajectory. Now as shown in Figure 6, the
next switching time, tj+1, is assigned randomly along with
a time axis for a current switching time, tj , and the ob-
ject position, q̃(tj+1) on the nominal trajectory is used as
boundary values of the object trajectory, q(t). Therefore
boundary conditions for q(t) can be written as

q(tj) = q̃(tj), q(tj+1) = q̃(tj+1) (29)

A relative tangential velocity at each contact point should
be zero at each switching time so that we can assign any
contact mode at the switching time. That can be realized
when the object velocity at each switching time is given so
that

q̇(tj) = q̇(tj+1) = 0 (30)

The object state trajectory, q(t), q̇(t), on [tj , tj+1], are gen-
erated so as to satisfy Equations(29),(30). The idea of gen-
erating an object state trajectory by giving a switching time
randomly, rather that directly sampling the state space of
the object, make the exploration quickly over the state ×
time space and the planner find feasible solutions easily.

t
goalt0 t j t j+1t1

q(t      )goal
q(   )tj q(      )tj+1

q(  )t

q(  )t
q(  )t

q(  )t
Nominal
TrajectoryObtained

Trajectory
q(  )0

Figure 6: Generating object trajectory on [tj , tj+1] based
on randomized approach for nominal trajectory.

Forbidden
region

M1M3

M2

State Space

Subgoals
at tj+1Subgoal

at tj

Figure 7: Building subgoals at switching time, tj+1, by ex-
ploring the state space of the manipulation system corre-
sponding to contact modes M1,M2 and M3. Forbidden
regions where there does not exist solution are detected by
the execution of inverse problem.

t1 tj

tj+1
tgoal

Stape Space

Figure 8: Iterative process of subgoal expansion on
[0, tgoal].

Figure 7 shows the process of exploration of the state
space of manipulation system on intervals, [tj , tj+1], in (b).
Black and white circles show the subgoals at the switching
time tj and tj+1, respectively. A line with arrow indicates
the state trajectory of the manipulation system. Whenever a
new switching time, tj+1, is assigned, the subsystems cor-
responding to the combinations of contact modes satisfying
Equations(22),(23) are considered, and the inverse problem
is executed iteratively at ever instant on [tj , tj+1] for the
assigned object state trajectory. When solutions satisfying
Equations(22)∼(28) over [tj , tj+1] are obtained, the sub-
goals at time tj+1 are generated. If subgoals cannot be gen-
erated for any contact mode, a new object trajectory is given
and the step (b) is executed iteratively. Note that there may
exist multiple subgoals at the same switching time, tj+1,
as shown in Figure 7, because system dynamics is different
according to a given contact mode. Figure 8 shows the iter-
ative process of system state exploration on [0, tgoal] using
this algorithm.

Iterating a generation of subgoals reaching the object
goal state up to itmax, the contact mode transition which
minimizes a performance index of the form

fcost =
N∑

j=0

∫ tj+1

tj

Pdt (31)



is selected in (c). A cost function, P , about energy, joint
torque and so on is considered according to the aim of ma-
nipulation.

4.3 Derivation of solutions for inverse problem

In this section we now derive solutions for inverse prob-
lem which is defined as “Given object motions, q̈(t), q̇(t)
and q(t), at an instant and a contact mode at each con-
tact point, find joint driving torque, τ (t), and the state of
the manipulation system at a next instant”. When the ma-
nipulation system is dynamically manipulable for a current
contact mode, there exists a feasible τ (t) for a given q̈(t).
However we cannot always decide unique τ (t) due to the
following two reasons.

When the wrench matrix, GAµ, is over-constrained, that
is, GAµ is full rank and 3nR + nS > 6, there are multiple
solutions to the contact force for a given object accelera-
tion. We determine the minimum norm of the contact force,
fA, by solving the following quadratic programming prob-
lem,

minimize 1/2 fT
AfA

subject to Eqs.(12), (14) (32)

On the other hand, when the manipulation system is
kinematically manipulable for a current contact mode and
the hand has redundant degrees of freedom(dof) for a ad-
missible dof of contact mode, that is, J A is full rank and
nθ > 3nR + nS , there are multiple solutions to the joint
acceleration for a given object acceleration. We derive the
joint acceleration, θ̈, from Equation(20), using the general-
ized inverse of JA, as

θ̈ = J+
A

(
GT

Aq̈ + Ġ
T

Aq̇ − J̇Aθ̇
)

(33)

Given object motions, q̈(t), q̇(t) and q(t), and joint
states, θ(t) and θ̇(t), the joint acceleration, θ̈(t), can be
obtained from Equation(33). Substituting q̇(t) and θ̇(t)
into Equation(19) yields the sliding velocity, v •S(t), • ∈
{T ,U }. Substituting q̈(t) and v•S(t) into Equation(32)
yields fA(t) which should be applied to the object in order
to generate q̈(t). Therefore the joint driving torque, τ (t),
to generate a desired object motions is derived by substi-
tuting θ̈(t) and fA(t) into Equation(13). The joint state,
θ(t + ∆t) and θ̇(t + ∆t), at a next instant is obtained by
integration of θ̈(t).

5 Simulation results

For simplicity, we now consider planning a 2D whole
arm grasp system in order to lift up an object toward a palm.
As shown in Figure 9, a two 2-DOF fingered hand with a
fixed palm is used to manipulate an elliptical object in the
vertical plane with rolling and/or sliding contacts. Each 2nd
link of the both fingers has the contacts with the object at

the initial time. We assume that the contacts are not bro-
ken once the links have the contact with the object. A base
frame is placed in the midpoint between each first joint in
the palm.

Object

Palm

zx

gravity
Finger1

Finger2

Figure 9: A planar whole arm grasp.

In the case of manipulation by hand with four joints in a
plane, the following constraints about the number of rolling
and sliding contacts are imposed by Equations(22),(23):

nR + nS ≤ 4, 3 ≤ 2nR + nS ≤ 4 (34)

The feasible contact mode set satisfying Equation(34) is

M ⊆ {RR, RS, 2SR, 3S, 4S} (35)

The inverse problem is executed for a manipulation system
corresponding to M, according to the number of a current
contact point.

The manipulation task is to rotate the object from 20 de-
gree to 0 degree, and to translate it from 0.30m to 0.15m
in the z direction in two seconds. The object has a major
axis of 0.37m and its minor axis is 0.30m. The mass of the
object is 3.00kg, and the moment of inertia about the center
of mass is 4.25×10−2kg·m2. The fixed palm of the hand is
0.20m long. The length of each finger link is 0.30m. The
mass of the finger link is 0.5kg with a moment of inertia of
1.67×10−3kg·m2. The coefficient of friction is µ = 0.2.

We obtained three contact mode transition graphs for
itmax = 2, as shown in Figure 10. Subscripts of contact
mode show a number of hand getting in contact with the
object. The figures on a edge of the graph indicate a se-
quence of switching. The contact mode transition with the
minimum consumption of joint driving torques is R 1R2 →
R1R2 → S1R2 → R1R2, as shown in Figure 10(a). The
snap shots for this solution are shown in Figures 11. The
2nd links with rolling and sliding contacts are drawn by
thick and thin lines, respectively.

6 Concluding remarks
We have presented the mathematical conditions and an

algorithm for the whole arm grasp planning problem with
switching contact modes. Changing the contact modes al-
lows manipulation skill to be extended. Motion planning
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Figure 10: Contact mode transition graph.
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Figure 11: Snap shots of whole arm grasps.

for such a system should consider changing dynamics and
kinematics according to the contact modes. We showed
four properties of manipulation system based on dynam-
ics and kinematics, and derived conditions to be satisfied in
motion planning. The conditions restrict the feasible con-
tact mode and the number of contact points.

The planning problem is simplified by giving the object
trajectory using a randomized technique. Therefore it is not
guaranteed to find a trajectory whenever one exists. Though
the algorithm is not complete, we could find the solution
trajectory efficiently compared to the direct sampling ap-
proach. Future works focus on generating a nominal object
trajectory by a randomized approach although the proposed
algorithm requires to specify an appropriate nominal trajec-
tory a priori such that there exist solutions at each instant.
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