Hiroshi Abea,b,*, Nobumichi Tamura b, D. Le Bollocfh b, Simon C. Moss b, Yoshie Matsuo c, Yasushi Ishii d, Jianming Bai e
a Department of Materials Science and Engineering, National
Defense Academy, Yokosuka 239-8686, Japan
b Department of Physics, University of Houston, Houston,
Texas 77204-5506, USA
c Department of Physics, Nara Women's University, Nara 630-8263,
Japan
d Department of Physics, Chuo University, Tokyo 112-8551,
Japan
e Oak Ridge Associated Universities, Oak Ridge, Tennessee
37831, USA
Mater. Sci. Eng. A 294-296, 299 (2000).
Keywords: Short-range order, Phason, Anomalous-X-ray
scattering, Decagonal quasicrystal
![]() |
FIG.1
Reciprocal space perpendicular to the periodic direction of the decagonal Al70Ni15Co15 phase. The area of the spot is proportional to the intensity of the reflection. The diffuse scattering has been measured around the labeled reflections. |
![]() ![]() ![]() ![]() ![]() ![]() |
FIG.2
ISRO(fNi-fCo) + [ISRO]*[Iphonon+phason] around (a) 10330, (b) 30440 and (c) 12540, where ISRO(fNi-fCo) presents diffuse scattering from short-range order between Ni and Co. Iphonon+phason reveals diffuse intensity from phonons and phasons. Absolute intensity is given in electron units. Calculated distributions around (d) 10330, (e) 30440 and (f) 12540 are based on phason elastic theory. |
![]() |
FIG.3
Pair-correlation function models of the first nearest neighbors. Model (a), (b) and (c) satisfy symmetry. Open circles reveal positive values of a parameters (an = 0.1) and closed circles present smaller positive values (an = 0.05). |
![]() |
Fig. 4
Calculated diffuse intensity from short-range order between Ni and Co using model in Fig. 3(a), where an=0.1 (1<n<10 ). Diffuse shapes of model (a), (b) and (c) are almost the same, although the actual diffuse intensity depends on proposed models. |
References
[1] W. Steurer, H. Haibach, B. Zhang, S. Kek, R. Luk, Acta Cryst. B
49 (4) (1993) 661-675.
[2] M A. Chernikov, H. R. Ott, A. Bianchi, A. Migliori, T. W. Darling,
Phys. Rev. Lett. 80 (2) (1998) 321-324.
[3] A. D. Bianchi, F. Bommeli, F. Felder, M. Kenzelmann, M. A. Chernikov,
L. Degiorgi, H. R. Ott, K. Edagawa, Phys. Rev. B 58 (6) (1998) 3046-0356.
[4] K. Hiraga, F. J. Lincoln, W. Sun, Mater. Trans. JIM 32 (4)
(1991) 308-314.
[5] K. Edagawa, H. Sawa, S. Takeuchi, Phil. Mag. Lett. 69 (4)
(1994) 227-234.
[6] K. Hradil, T. Proffen, F. Frey, S. Kek, H. G. Krane, T. Wroblewski,
Phil. Mag. B 71 (5) (1995) 955-966.
[7] A. Baumgarte, J. Schreuer, M. A. Estermann, W. Steurer, Phil. Mag.
A 75 (6) (1997) 1665-1675.
[8] T. C. Lubensky, J. E. S. Socolar, P. J. Steinhardt, P. A. Bancel,
P. A. Heiney, Phys. Rev. Lett. 57 (12) (1986) 1440-1443.
[9] H. Abe, T. Tamura, D. Le Bollocfh, S. C. Moss, Y. Matsuo, Y. Ishii,
J. Bai, submitted to Phys. Rev. Lett.
[10] Ishii, submitted to Mater. Sci. & Eng. A.
[11] Z. M. Stadnik, D. Purdie, M. Garnier, Y. Baer, A. -P. Tsai, A.
Inoue, K. Edagawa, S. Takeuchi, K. H. J. Buschow, Phys Rev. B 55
(16) (1997) 10938-10951.
[12] S. C. Moss, Mater. Res. Soc. Symp. Proc. 376 (1995) 675-687.
Last Modified: April 1, 2009