Hiroshi ABE, Yoshie MATSUO1, Hiroyuki SAITOH2, Tomoko KUSAWAKE2, Ken-ichi OHSHIMA2 and Hironori NAKAO3
Department of Materials Science and Engineering, National Defense Academy,
1-10-20 Hashirimizu, Yokosuka 239-8686, Japan
1Department of Physics, Nara Women's University, Kitauoya-Higasi, Nara 630-8506,
Japan
2Institute of Materials Science, University of Tsukuba, 1-1-1 Tennoudai,
Tsukuba 305-8573, Japan
3Photon Factory, Institute of Materials Structure
Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba
305-0801, Japan
Jpn. J. Appl. Phys. Vol.39 (2000) No.11A pp.L1111 - L1114
KEYWORDS: ideal decagonal quasicrystal, 3 wavelength method, atomic short-range
order, no phason strain
![]() |
FIG.1
Reciprocal space perpendicular to the periodic direction of the decagonal Al72Ni20Co8. The area of the spot is proportional to the intensity of reflections. The diffuse scattering has been measured around the labeled reflections.. |
![]() ![]() ![]() |
FIG.2
Diffuse scattering on the quasiperiodic plane (Qx, Qy) around (a) 10-3-30 , (b) 30-4-40 and (c) 1-2-5-40 at 8.304 keV, where each interval of contour maps is 5 electron units per atom. The raveled reflections of A, B and C in Fig.1 stand for 10-3-30, 30-4-40 and 1-2-5-40 . The white crosses on broad peaks exhibit the positions of superstructure reflections. Other sharp peaks are main reflections. Line A in Fig. 2(b) is a measurement region in Fig. 4(a). Dot B in Fig. 2(b) is used for the calculated values in Table I. |
![]() |
FIG.3
FWHM of Bragg reflections along | Gperp|. Open circles are FWHM of Al70Ni15Co15 and closed circles are that of Al72Ni20Co8. FWHM values are deconvoluted by the experimental resolution function. |
![]() ![]() |
Fig. 4
(a) Line-scan along Qy in line A of Fig 2(b) around the Bragg reflection. Open squares, open circles and closed triangles are diffuse intensities at 8.304, 8.098 and 7.686 keV, respectively. (b) Three kinds of pair-correlation functions, aAl,Ni(Q), aNi,Co(Q) and aCo,Al(Q), in Laue units per atom at the same Q region. |
References
1) S. Ritsch, C. Beeli, H. ?U. Nissen, T. Godecke, M. Scheffer and R. Luck:
Philos. Mag. Lett. 74 (1996) 99.
2) A. P. Tsai, A. Fujiwara, A. Inoue and T. Masumoto: Philos. Mag. Lett. 74 (1996) 233.
3) K. Saitoh, K. Tsuda, M. Tanaka, K. Kaneko and A. P. Tsai: Jpn. J. Appl. Phys. 36 (1997) L1404.
4) E. Abe, K. Saitoh, H. Takakura, A. P. Tsai, P. J. Steinhardt and H.
?C. Jeong: Phys. Rev. Lett. 84 (2000) 4609.
5) K. Hiraga, F. J. Lincoln and W. Sun: Mater. Trans. JIM 32 (1991) 308.
6) K. Edagawa, H. Sawa and S. Takeuchi: Philos. Mag. Lett. 69 (1994) 227.
7) K. Hradil, T. Proffen, F. Frey, S. Kek, H. G. Krane and T. Wroblewski:
Philos. Mag. B 71 (1995) 955.
8) A. Baumgarte, J. Schreuer, M. A. Estermann and W. Steurer: Philos. Mag. A 75 (1997) 1665.
9) M. de Boissieu, M. Boudard, B. Hennion, R. Bellissent, S. Kycia, A.
Goldman, C. Janot and M. Audier: Phys. Rev. Lett. 75 (1995) 89.
10) M. J. Capitan, Y. Calvayrac, A. Quivy, J. L. Joulaud, S. Lefebvre and
D. Gratias: Phys. Rev. B 60 (1999) 6398.
11) H. Abe, N. Tamura, D. Le Bollofh, S. C. Moss, Y. Matsuo, Y. Ishii and J. Bai: to be published in Mater. Sci. Eng. A (2000).
12) T. C. Lubensky, J. E. S. Socolar, P. J. Steinhardt, P. A. Bancel and
P. A. Heiney: Phys. Rev. Lett. 57 (1986) 1440.
13) Y. Ishii: Phys. Rev. B 45 (1992) 5228.
14) S. C. Moss: Mater. Res. Soc. Symp. Proc. 376 (1995) 675.
15) L. Reinhard, J. L. Robertson, S. C. Moss, G. E. Ice, P. Zschack and
C. J. Sparks: Phys. Rev. B 45 (1992) 2662.
16) S. Hashimoto, H. Iwasaki, K. Ohshima, J. Harada, M. Sakata and H. Terauchi: J. Phys. Soc. Jpn. 54 (1985) 3796.
17) M A. Chernikov, H. R. Ott, A. Bianchi, A. Migliori and T. W. Darling:
Phys. Rev. Lett. 80 (1998) 321.
18) M. Widom, to be published in Philos. Mag. A.
Last Modified: Dec. 21, 2009