aDepartment of Materials Science and Engineering, National Defense Academy,
1-10-20 Hashirimizu, Yokosuka 239-8686, Japan
bInstitute of Materials Science, University of Tsukuba, 1-1-1 Tennoudai,
Tsukuba 305-8573, Japan
cPhoton Factory, Institute of Materials Structure Science, High Energy Accelerator
Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
dDepartment of Physics, Nara Women's University,
Kitauoya-Higasi, Nara 630-8506, Japan
J. Alloys and Comp. 342, 241 (2002).
![]() |
Fig. 1 Temperature dependence of FWHM for a radial scan of Bragg reflection. Temperature cycle contains two parts; firstly cooling from 1117 down to 1053 K and secondary heating from 1053 up to 1115 K. FWHM increased gradually above 1083 K, which is transformation temperature from S1- to (S1+S2)-superstructure. FWHM of Bragg reflection is almost reversible, though intensity was almost constant during this temperature cycle. |
![]() |
Fig. 2 The distributions of the SRO diffuse scattering around Bragg reflection at (a) room temperature and (b) 1117 K in ANC1. Arrows shown in Fig. 2(b) presents the additional diffuse peaks in the center of S1-superstructure positions. Diffuse intensities of the labeled diffuse peaks of P1 and P2 were measured during the temperature cycle in Fig. 3. |
![]() ![]() |
Fig. 3 Temperature dependences of diffuse scattering of ANC1 at (a) P1 and (b) P2. At the transformation temperature, Tc2, a discrete change is seen both at P1 and P2. Hysteresis appears at peculiar temperature, Tp, which is below Tc1. Tc1 is obtained by the extrapolation of temperature dependence of diffuse intensities. |
![]() |
Fig. 4 Temperature dependences of diffuse scattering and FWHM of Bragg reflection of ANC2 at P1 on the cooling process. ANC2 has similar temperature dependence of ANC1. |
[1] S. Ritsch, C. Beeli, H. ?U. Nissen, T. Godecke, M. Scheffer and R.
Luck, Philos. Mag. Lett. 74 (1996) 99.
[2] A. P. Tsai, A. Fujiwara, A. Inoue and T. Msumoto, Philos. Mag. Lett. 74 (1996) 233.
[3] K. Saitoh, K. Tsuda, M. Tanaka, K. Kaneko and A. P. Tsai, Jpn. J. Appl. Phys. 36 (1997) L1404.
[4] E. Abe, K. Saitoh, H. Takakura, A. P. Tsai, P. J. Steinhardt and H. ?C. Jeong, Phys. Rev. Lett. 84 (2000) 4609.
[5] H. Takakura, A. Yamamoto and A. P. Tsai, Acta Cryst. A57 (2001) 576.
[6] H. Abe, Y. Matsuo, H. Saitoh, T. Kusawake, K. Ohshima and H. Nakao,
Jpn. J. Appl. Phys. 39 (2000) L1111.
[7] T. C. Lubensky, J. E. S. Socolar, P. J. Steinhardt, P. A. Bancel and P. A. Heiney, Phys. Rev. Lett. 57 (1986) 1440.
[8] K. Hiraga, F. J. Lincoln and W. Sun, Mater. Trans. JIM 32 (1991) 308.
[9] H. Abe, N. Tamura, D. Le Bollofh, S. C. Moss, Y. Matsuo, Y. Ishii and J. Bai, Mater. Sci. Eng. 294-296 (2000) 299.
[10] Y. Ishii, Mater. Sci. Eng. 294-296 (2000) 377.
[11] K. Edagawa, H. Sawa and S. Takeuchi, Phil. Mag. Lett. 69 (1994) 227.
[12] K. Hradil, T. Proffen, F. Frey, S. Kek, H. G. Krane and T. Wroblewski,
Phil. Mag. B71 (1995) 955.
[13] A. Baumgarte, J. Schreuer, M. A. Estermann and W. Steurer, Phil. Mag. A75 (1997) 1665.
[14] K. Edagawa, K. Suzuki, S. Terauchi, Phys. Rev. Lett. 85 (2000) 1674.
[15] S. Hashimoto, Acta Cryst. A56 (2000) 85.
[16] M. Honal, T. Haibach and W. Steurer, Acta Cryst. A54 (1998) 374.
[17] M. Widom, I. Al-Lehyani, Y Wang and E. Cockayne, Mater. Sci. and Eng. A294-296 (200) 295.
Last Modified: April 1, 2009