Department of Materials Science and Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka 239-8686, Japan
Jpn. J. Appl. Phys. 42, 3552
(2003).
KEYWORDS: ultrasonic irradiation, incubation time, kinetics, local pressure field, nucleation and growth process, fractal
![]() |
Figure 1
Melting points depend on purities. Each purity is determined by DSC measurement. |
![]() |
Figure 2
Applied power to an ultrasonic transducer (PZT) is proportional to the burst values, tbur. Burst sine waves are repeated a fixed time interval, trpt. In the experiments, trpt is fixed at 900 ms. |
|
Figure 3
Solidification temperature remains almost constant above irradiated ultrasonic power. Under no ultrasonic irradiation, the solidification temperature decreases. |
![]() |
Figure 4
Time dependence of ultrasonic transducer power at fixed temperature. Apparently, the incubation time appears above solidification temperature. |
![]() |
Figure 5
Incubation time depends on both ultrasonic transducer power and holding temperature. The solid lines show the calculated incubation time (See text). |
![]() ![]() |
Figure 6
Microstructures of solid naphthalene revealed using an optical microscope. (a) The sample is obtained by quenching under ultrasonic irradiation. Fractal dimension is 1.76. (b) The sample is obtained by isothermal holding above Ts under ultrasonic irradiation. |
![]() |
Figure 7
Fractal dimension, D, for the surface pattern shown in Fig. 6(a) is found to be 1.76 +- 0.04 by the scaling method. |
1) D. W. J. Cruickshank: Acta Crystallogr. 10 (1957) 504.
2) G. S. Pawley and E. A. Yeats: Acta Crystallogr. Sec. B 25 (1969) 2009.
3) C. P. Brock and J. D. Dunits: Acta Crystallogr. Sec. B 38 (1982) 2218.
4) H. G. Kjaerggard and B. R. Henry: J. Phys. Chem. 100 (1996) 4749.
5) K. Ishii, H. Nakayama, M. Kawahara, K. Koyama, K. Ando and J. Yokoyama:
Chem. Phys. 199 (1995) 245.
6) K. Ishii, H. Nakayama, T. Yoshida, H. Usui and K. Koyama: Bull. Chem. Soc. Jpn. 69 (1996) 2831.
7) K. Ishii, H. Nakayama, Y. Yagasaki, K. Ando and M. Kawahara: Chem. Phys. Lett. 222 (1994) 117.
8) A. Yethiraj and A. van Blaaderen: Nature 421 (2003) 513.
9) X. Chavanne, S. Balibar and F. Caupin: Phys. Rev. Lett. 86 (2001) 5506.
10) L. E. Kinsler and A. R. Frey: Fundamentals of Acoustics (John Wiley & Sons, New York, 1962).
11) T. Kakeshita, K. Kuroiwa, K. Shimizu, T. Ikeda, A. Yamagishi and M.
Date: Mater. Trans. JIM 34 (1993) 415.
12) H. Abe, K. Ohshima and T. Suzuki: Mater. Trans. JIM 36 (1995) 1200.
Last Modified: April 1, 2009