T. Kurita, H. Matsumoto ., K. Sakamoto, Hiroshi ABE
Department of
Materials Science and
Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka
239-8686
Journal of Alloys and Compounds 400 (2005) 92.
Abstract
The transformation behavior on shock-loaded Ni48Ti52 has been studied by employing a differential scanning calorimeter in order
to reveal residual effects of shock treatment in the thermoelastic martensitic
transformation of Ni48Ti52, exhibiting a shape memory effect between a high temperature phase and
a low temperature phase. The shock treatment of Ni48Ti52 was performed by a flyer plate impact method with the flyer velocity of
1.2 km s.1. The height of the exothermic and endothermic peaks due to the
transformation of shock-treated Ni48Ti52 become small and their temperature regions are expanded. Although the
increase of the number of the thermal cycles induces no intermediate phase
on Ni48Ti52 before the shock treatment to result in a one-step transformation, a three-step
transformation is observed after annealing at an appropriate temperature
on the shock-treated Ni48Ti52, which correspond to the appearance of two intermediate phases. The shock
treatment increases non-chemical free energy such as strain energy and
interfacial energy of a phase boundary, which is attributable to the microstructure
of shock-induced dislocations and an increase of the disorder in the lattice
of ordered Ni48Ti52, resulting in the three-step transformation. Therefore, it is thought
that the shock treatment can make it possible to achieve a new state on
NiTi.
Keywords: Shock compression; Powder gun; DSC; Phase transformation
References
[1] T. Tadaki, Bull. Jpn. Inst. Met. 21 (1982) 170.
[2] K. Shimizu, Bull. Jpn. Inst. Met. 17 (1978) 5.
[3] C.M. Wayman, Bull. Jpn. Inst. Met. 19 (1980) 323.
[4] T. Honma, Bull. Jpn. Inst. Met. 19 (1980) 366.
[5] T. Saburi, in: K. Otsuka, C.M. Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge, 1998, p. 49.
[6] H. Matsumoto, Physica B 190 (1993) 115.
[7] H. Matsumoto, Netsu Sokutei 28 (2001) 2.
[8] H. Matsumoto, J. Alloys Compd. 350 (2003) 213.
[9] H. Matsumoto, J. Jpn. Inst. Met. 66 (2002) 1350.
[10] T. Kurita, H. Matsumoto, H. Abe, J. Alloys Compd. 381 (2004) 158.
[11] T. Kurita, H. Matsumoto, H. Abe, J. Mater. Sci. 39 (2004) 4391.
[12] K. Kondo, H. Hirai, H. Oda, Jpn. J. Appl. Phys. 33 (1994) 2079.
[13] H. Matsumoto, K. Kondo, S. Dohi, A. Sawaoka, J. Mater. Sci. 22 (1987) 581.
[14] L.H. Yu, M.A. Meyers, J. Mater. Sci. 26 (1991) 601.
[15] S. Shang, K. Hokamoto, M.A. Meyers, J. Mater. Sci. 27 (1992) 5470.
[16] H. Matsumoto, K. Kondo, A. Sawaoka, J. Jpn. Inst. Met. 52 (1988) 810.
[17] H. Matsumoto, K. Kondo, A. Sawaoka, J. Jpn. Inst. Met. 53 (1989) 134.
[18] T.C. Li, Y.B. Qui, J.T. Liu, F.T. Wang, M. Zhu, D.Z. Yang, J. Mater. Sci. Lett. 11 (1992) 845.
[19] X. Han, W. Zou, R. Way, S. Jin, Z. Zhang, T. Li, D. Yang, J. Mater. Sci. 32 (1997) 4723.
[20] H. Matsumoto, Physica B 334 (2003) 112.

ab@nda.ac.jp
Department of Materials Science and
Engineering
National Defense Academy
Last Modified: April 1, 2009