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Abstract

The author discusses on the the minimum problem of the wave resistance of
three types of the singularity distribution.

He finds no minimum solution in general, but in the cases with some restrictions.
He points out also the difficulty of the numerical computation, and asserts that there
may be quasi-waveless solutions.

The prineipal idea of this paper is based on the fact that a singularity distribu-
tion gives a value of wave resistance, but inversely a value of wave resistance does
not correspond to one distribution but to infinitely many ones. This is said exactly
in the former paper and approximately in the present.

Introduction. The problem to minimize the wave making resistance of ships has made
a great progress in recent works, but also thrown back many questions to the theory®:®,

The author intends to pick up and find out their difficulties as far as possible,

First of all, we must classificate problems and questions.

The problems are distinguished by the types of ships and the types of minimum condi-
tions. Firstly, we consider three cases for the types of ships, or mathematically, of their
singularity distribution.

I a) Mitchell-Havelock distributions for the model of displacement ships'®,
b) pressure distributions for surface ships,
¢) submerged ships.

Secondly, our minimum proplem assumes naturally the given velocity and length or
Froude number, and the given displacement or total sum of the singularity distribution of
the given type.

Under these circumstances, problems are considered for which
IT a) A) there is not another restriction,

B) the moment of the distribution is given,
C) the second moment is given.

These conditions are concerned with integrated quantities of the distribution, but by the
familiar notation to naval architects we may ask the next problem,

II b) under the same conditions as I a) A), the block coefficient must be taken as a given
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value®.
Since the displacement is given, assuming the given draft, this condition determines

the breadth. This is not of integrated quantity, so that this problem may differ from the
ones described above.

Lastly, we ask the following questions for these problems.
1) Have the minimum problem a solution?

This is a question partly solved by 8. Karp and others!®, so that we may ask as “In
which cases the problem has a solution??”.

2) If we have the solution, is it uniquely determined ?

G. Weinblum and others have described the instability of their numerical solution, that
is, they obtained fairly different minimum ship forms respectively®. From what cause such
phenomenon appears?

3) In these connection, we must remind the theory of the waveless ship by T. Inui®. If
a ship would have no wave resistance, then has the minimum problem their meaning?

What is the relation between the minimum wave resistance ship form and the waveless
ship form?

These are concerns of the author, and he discusses them under the various types of
distributions cited above.

Chapter 1. Submerged ship

The wave resistance of a submerged ship is somewhat simpler than the usual floating
ship, and discussed in detail numerically and theoretically in the literatures*:¥’;

In all of those works, they have discussed with doublet distributions on the given. seg-
ment of the longitudinal axis. '

Hence, we suffice too with such simplified treatment.

1.1 Influence function. Consider the water flow of unit velocity, and take the origin
of the coordinates at the center of the doublet distribution occupying the segment [x|£1,
submerged under the water surface with immersion f, #-axis horizontally and upper steam
direction, z-axis vertically upwards.

The wave resistance of the distribution is given by the formula!?,

. k)
=£H: | F(g sec? 8, 6)[* secs 4d6, (L.L.1)
1 |
Fx, ﬁ)=5 Hix)e r/~isscont dy; , (1.1.2)
-1

where p is the water density and g the gravity constant of our unit system, and so Froude
number, Fr., based on the ship length equals to 1/42g.
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H(z) equals approximately to the sectional area as usually known.

Now, if we add a small quantity <4H(x) to H(x) in the vicinity of , neglecting higher
order term, the wave resistance will increase 4R,

Taking the variation of (1.1.1), we have

AR=209G(x} 4H(z) dx , (1.1.83)

anmd

x

s —_— .
G(a:)=Re.%j2F(g 8802 0’ 6) e—yfsecz g+igx secd se(:5 0d0
o

=L moP.oEEune, (114

‘where the function P_; is seen in Appendix A.
Hence, the function G(x) tells us the wave resistance variation for small variation of
‘the distribution. We will call G() hereafter the influence function according to E. Hogner?.
We may write now (1.1.1) with the aid of this function as

k= ng G(x) H(z) da: (1.1.5)

Now let us consider the minimum problem II) a A).

Then the wave resistance must be stationary for any variation of the distribution.
Accordingly, we can assert the influence function must be constant over the length of dis-
dribution, that is,

G@)=C. (1.1.6)

Write the displacement volume or total sum of the distribution as
. ‘
= j Ha)dz . L
-1

If (1.1.6) would hold good, then the wave resistance might be from (1.1.5)
R =pgl"C, (1.1.8)

:80 that C must be positive.

Thus, the problem reduces to solve the integral equation (1.1.6) with (1.1.4)

Now, the kernel P_s in (1.1.4) is regular in @, therefore G(z) is to be regular in « too,
.assumed the integrability of the right hand expressmn

If G(z) would be constant in |#{<1, and it might be constant at mﬁmty too. But

P_s(gx, 29f) vanishes at infinity, so that we may conclude this constant to be zero. There-

fore H(x) should be zero identically.

Namely, we have no solution of the problem except the one vanishing 1dent1cally.
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However, the integral equation (1.1.6) with (1.1.4) might have a solution numerically in
almost every case, in fact, G. Weinblum solved those problems®. What is the relation
between the fact that there are those numerical solutions and the fact that the minimum
golution is to be identically zero?

1.2 Quasi-waveless solution. If there is no minimum value of the wave resistance, it
seems that the least value might be zero.

In fact, we will show the wave resistance to make small at our disposal.

Consider the next distribution

i cos 2nd

H(w)=n§0az,.—siﬁ-— ,  w=-—cosh, (1.2.1y

Since the kernel of (1.1.4) is expanded as (A. 10), integrating term by term, we have

bt o Mm —1ym gim o7
G(m):gagomz——- E ( 1) g Um+2(29f)w [14.3

0 50 22T (2ri{n+m—r)l(m—n—1r)!

=t S (=1 S (1), Can, (1.2.2)
o (27,)! = n2n, 2r y
where
e Ur+n+s+2(29f)
— 2n 1\ 28
Can,2r=0/2) S~ 10/ S (1.2.3)
Now, taking a sufficiently large integer N, and put .
) (— 1)@ Can, =0, for r=0,--, (N=1). (1.2.4)
Then we have from (1.2.2)
(gx)”}
— a3
Gl@)=g o[ ) (1.2.5)

Therefore, since the series expansion (1.2.2) is shown convergent, this value will be
sufficiently small by selecting appropriately large N.

Take M unknown a,’s (M >N), and we have a solution except (M—N-+1) undetermined
coefficients, for we have (N+1) equations (1.2.4) with (L.1.7).

If the influence function would be small, and the wave resistance might be small by
(1.1.5).

Thus, we may have many solutions by appropriate selections of M and N, and reduce
the wave resistance smaller at our disposal. '

In these circumstances, we call these solutions quasi-waveless for a convenience.

However, we can not expect that the solutions obtained converge to a definite distribu-
tion, because the minimum solution should be zero identically.
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1.3 The case of small immersion. The numerical computations of the above method
will be very laborious when the immersion is small. There is another method to obtain the
distributions with the smaller wave resistance.

Define the function

F(w>=%ji1H(E)P.1(g x—¢§,291)dé, (1.3.1)
(d/dx)'T'(x)=G(z) . (1.3.2)
If we put with arbitrary constants a, as

TI'@)y=ay+a12+as 22 +as2?, (1.3.3)

then we have by (1.8.2)
Gx) =0, (1.3.4)

and so by (1.1.5)

RE=0. (1.3.5)

The integral equation (1.3.1) with (1.8.3) has a solution numerically in almost every
cases, but may be shown to have only identically vanishing solution by the same way as in
§ 1.1 theoretically.

Meanwhile, if the immersion tends to zero, the integral equation has a solution not
identically zero by Appendix B.

Accordingly, when the immersion becomes small enough, we may expect a solution like
the one in its limit,

And now we call these solutions quasi-waveless too.

Chapter 2. Mitchell-Havelock type distribution®

We consider the doublet distribution over the rectangle on the x—z plane, and similates
the displacement ship.
2.1 General discussion. The wave resistance is the same form as (1.1.1) with

0 rl
Flk, 0):]_'= S_ H(z, z)e w*-i7cosd dpde | @.1.1)

where ¢ is the ratio of the draft to the half length, and H{z,?) equals approximately to
the breadth of the ship.
Define the influence function as (1.1.4),

g8 [0 [t -
6w 0=L( [* me 0P 0a—E ~gmrD s, 2.12)

then the wave resistance is written as
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1] 1
Rngj j H, 2)G(, 2)dzdz . @.1.3)
-tJ-1
The minimum value is attained, when
G(x, 2)=C: Constant, 2.1.4)
under the condition
1] 1
7:5 j Hiz, 9)dedz . 2.1.5)
-t -1
Then
R=pglC. (2.1.6)

At first, we have the next differential equation from (A. 2),

o 18 _
(Wjugw)e(x,z)._o, for 2<0. @.1.7)

Moreover, introduce the auxiliary function vanishing at =20 by the next equation!®

8 1 &
H(z, Z)—(W—Ew)d(% z), (2.1.8)
and we may write
. g poe L
G(z, Z)=g;§ o(&, 0P _s(gu—§, —gz)dE . (2.1.9)

Since the above formula is regular in # with the appropriate class of the function o,
we will deduce the same conclusion as of the preceding chaper.

In fact, if we pick up the distributions uniform in z and represented by Fourier trans-
forms of functions which have the next quality

F(x, §)=0, for k>g, (2.1.10)

we may have waveless distributions extending to infinity but confined practically in /<%
by suitable combinations of such functions'?,

2.2 The case of infinite draft. Thus, it seems that the minimum problem has no solu-
tion in general, but this fact does not hold always in more restricted cases.

Consider that the distribution is uniform in z and extends to infinitely great depth, and
this is the case discussed by S. Karp and others mathematically and solved numerically'®.

Here, we consider it analytically in more detail.

Integrating (2.1.2) and (2.1.3), we have

o= =(3g2/§)[1 H@) ) de, @.2.1)
5 (B/2y
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where

ro=—g| HOP.G==¢ 0, .22

Assume the next expansion by Mathieu functions, hereafter we follow the notations of
the text by McLachlan®,

E oo
H(—cosﬁ)=m Dance(t, @y, g=g*/4. 2.2.3)

n=0

Then, the mean breadth defined as

— 1 ’ ‘
B=%j_lﬂ(m) dz , : (2.2.4)

proposes a condition between the coefficients in (2.2.8), that is,
%i:!{)azn AP =2/m . (2.2.5)
By the way, define the next quantity
s=B/HO)=1/ [ 5 tancenn(e/2, q):|, 2.2.6)

this equals approximately to the water plane area coefficient.
Moreover, we define the first and second moment as follows,

[ Hoado=-1Ba, o=@/ Tomader, 2.2.T)

1 — oo
s Hx)z*do=8Bm?, m*=1/8+(n/32)3 ., AZY. (2.2.8)
-1 n=0
Now, put (2.2.3) into (2.2.2) and use (B. 18), we have
I(—e086)= 3} nancenld, ) - (@29

Owing to the orthogonality of Mathieu functions, the wave resistance iz written from
(2.2.1) with this equation as

Cp = 4ng? Z_‘,Op,,aﬁ . (2.2,10)

Hence, the minimum problem reduces to a simple calculation.
A) Obtain the minimum of (2.2.10) under the condition (2.2.5).

As explaned in the preceding chapter or obtained by Lagrange’s method, we have it,
when
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I'(—cosHh=4: Constant,
then
¢ = 16¢%1.

Sinee
3 AV 066, )=1/2,

comparing with (2.2.9), we have
A2n41 =0 » a2n=21A82n)/#2nEa'2*n )

Putting this into (2.2.5), we have the constant, that is,
A=1/(xCo,0) , Co, 0= 20[1432")32/ 1o

putting this value into (2.2.12),
,=16g%/(xCo, ¢)=Cuw,
Lastly, the coefficient by (2.2.6) becomes

8=2Cy.o/2D0=80, Di= 5';0 APV cerm/2, @)/ tizn -

B) Solve the same problem with the other condition (2.2.7).
It is to be, by Lagrange’s method,

I'(—cos)=2A+2co88.
Then,
co=16g24,132g%ad, ,

The constant 4; is given by (2.2.14) ag easily seen, and since
COS 0= E_OA?’H-U 032n+1(0! Q) ’

comparing with (2.2.9), we have
Oons1=Ag AL™ Y/ tions1

and that from (2.2.7)

h=80/(:C1,),  Ci,i= 3L [AL*T/ piner

‘When we write as

(2.2.11)

(2.2.12)

(2.2.13)

(2.2.14)

{(2.2.15)

(2.2.16)

(2.2.17)

(2.2.18)

(2.2.19)

(2.2.20)
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Cuw,=16g%/(#Cy, 1}, (2.2.21)
we have from (2.2.18) with (2.2.15) finally
Co=Cus+160%Cu . 2.2.22)
C) Consider A problem with the other condition (2.2.8), then we have in the same way,
I'(—cos )y=A1+4: co8 24, (2.2.23)
and
C=160%(A1—Az)+128g% 4, m? . (2.2.24)

Since
cos20="13 AP cexn(t, q),
n=0

we have the coefficients in like manner as in A), that is,
@2n01=0,  @2=[24 AF 4+ A1/ iz, - (2.2.25)
Using these formulae, we have
A=1/(xCy, o) —2r Cy, 2/ (x4) , 22 =2Cy,o/(nd), (2.2.26)
where
y=16(m?-—-m3) , (2;2.27)

my i the value of (2.2.8) taken for the solution A, namely

m3=1/8+Cs.2/(16Co.¢) , (2.2.28)
and
4=Cy,0C;,2—Ci2 »
Con= S AT AT i, Co= S AST (B 22
Then, we have from (2.2.25) with (2.2.15)
Coo=Cws 7 Cws (2.2.30)
where
e, =169%Cy, o/ (nd) . ' (2.2.31)
Here, we rewrite (2.2.25) as
agm=0%+7b%,
2 (2.2.32)

b2

= P [Co,0 AT —Co,2 AF™] o



Table
4q 1 4 10 16 24 36 50 64 80 100
g 1 2 +10 4 V24 6 V50 8 V80 10
Iy, 0.7071 0.500 0.3976 (.3536 0.3195 0.2887 0.2659 0.2500 0.2364 0.2236
o 0.644094 | 0.998125(1) | 0.814806(2) | 0.182126(2) | 0.193168(3) | 0. 189457(4) | 0.202547(5) | 0.294995(6) | 0.419816(7) | 0.478425(8)
I 1.096150 | 0.732746 (.194796 0.470893 0.851693(2) | 0.992818(8) | 0.122314(3) | 0.199029(4) | 0.313925(5) | 0.397238(6)
2 0.547239 | 0.686380 0.662905 0.397181 0.138960 0.234523(1) | 0.342655(2) | 0.624663(3) | 0.109448(3) | 0.154365(4)
s 0.344356 | 0.385909 0.500315 0.582640 0.510346 0.227603 0.547913(1) | 0.120592(1) | 0.237545(2) | 0.373999(3)
M 0.254270 | 0.268533 0.306237 0.36026b 0.448653 0.495383 0.320119 0.128702 0.344321(1) | 0.634796(2)
Ms 0.202113 | 0.208842 0.224475 0.244169 0.279845 0.358126 0.442317 0.402119 0.230739 0.712211(1)
U 0.167868 | 0.171617 0.179844 0.189269 0.204374 0.235323 0.290597 0.362817 0.406359 0.305693
e — 0.145917 0.150846 0.156245 0.164335 0.179028 0.202103 0.235452 0.290416 0.363293
Us — 0.127026 0.130230 0.1336564 0.138613 0.147071 0.159004 0.174202 0.197839 0.241970
Cuws 6.5518 4.4226 1.1384 0.34299 0.85324(1) | 0.14156(1) | 0.28083(2) | 0.46094(3) | 0.87171(4) | 0.13191(4)
Cws 2.789 12,73 23.60 20.36 12.01 4.566 1.441 0.4719 0.1398 0.0330 :
o 1.606 1.114 0.7960 0.6827 0.6039 0.5378 0.4910 0.4591 0.4323 0.4074
My 0.7109 0.6358 0.5371 0.4837 0.4401 0.3997 0.3694 0.3480 0.3298 0.3123
18cws/g® | 44.60 25.46 11.94 5.090 1.636 0.3349 0.6522(1) | 0.1475(1) | 0.8126(2) 0.0528(3)
¢p 0.5917 0.6031 0.6078 0.5813 0.5409 0.4931 0.4566 0.4305 0.4085 0.3869 ‘
0.5| 20.26. 53.46 46.35 12.26 1.639 0.6213(1) | 0.2905(2) | 0.3574(2) | 0.2083(2) | 0.7188(3)
5_0.6 14.43 28.29 14.90 2.038 0.8688(1) 0.1046 0.6283(1) 0.2610(1) | 0.8602(2) | 0.2134(2)
Cw|0=0.7]| 11.24 15.80 3.563 0.3974 0.7623 0.4658 0.1657 0.5553(1) | 0.1603(1) | 0.3609%(2)
' 0.8| 9.395 9.438 1.142 2.261 2.224 0.9176 0.2758 0.8488(1) 0.2312(1) 0.4970(2)
0.512.2170 1.963 -1.,384 - |-0.7648 —0.3596 -0.1025 0.0204 0.0812 0.1196 0.1462
6—0‘6 -1.6808 |-1.369 -0.7638 -0.288b ~0.0114 0.1407 0.2049 0.2331 0.2471 0.2534
T 19%0.71-1.2971  -0.9456 -0.3206 0.0517 0.2374 10.3145 0.3367 0.3416 0.3381 0.3300
0.8-1.00%6 |-0.6277 0.0118 0.3069 0.4240 0.4448 0.4356 0.4230 0.4064 0.3874
af 0.89565 | 0.93186 1.05195 1.13513 1.20958 1.28477 1.34651 1.89366 1.43700 1.48113
af 0.09256 | 0.04368 0.00792 0.00286 0.00141 0.00088 0.00065 0.00052 0.00043 0.00035
af 0.00105 | 0.00268 0.00151 0.00061 0.00017 0.00003 0.00001 0.006000 0.00000 0.00000
a¥ 0.60001 | 0.00003 0.00005 0.00039 0.00002 0.00001 0.00000 0.00000 0.00000 0.00000
x -0.06566 [-0.19362 -0.32323 - -0.38490 —-0.45604 -0.56957 —-0.67128 -0.77320 ~(_88073 —1.00420
¥ 0.63372 | 0.59764 | 0.50740 0.47106 - 0.50503 0.63798 0.80724 0.96082 1.11919 1.20827
b¥ 0.02856 | 0.12674 0.23008 0.18878 0.09742 0.03211 0.01299 0.00828 0.00669 0.00691
b¥ 0.00021 | 0.00366 0.01698 0.04590 0.02089 0.01157 0.00465 0.00157 ~ (0.00047 0.00014
H 0.00000 | 0.00004 0.00006 0.00101 0.00135 0.00116 0.00058 0.00037 0.00016 —

The numbers () in parenthesis indicate that the results must be multiplied by 10", for example 0.3441(2} means 0.003441.

ot

oussag ‘I
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We show some values calculated by the tables of Mathieu functions in Table and Figure,
in which the values of ¢, refer to the quantity 8, more familiar than 7. with the aid of
the next formula,

1/6=1/60+42r(Co,0 D:—Cy, s D)/ (n ), (2.2.83)

where 8, is given by (2.2.16), and
D= Z_‘.OA?"’ Cen(n/2, @)/ tan . (2.2.34)

2.2.1 Approximate relations. Let wus
consider the approximate relations by making
use of the results given in Appendix C.

At first, suppose g is sufficiently small,
then

A) z¢% log (4/r9) , ]
af=2J2/x, a%=0, for n>1,
' (2.2.1.1)
H{—cos )=2/(rsin ), (2.2.1.2)
and
cw.?#%gflog 4/rq) ,‘ 1dgr=c* : Euler’s Const. (2.2.1.8)
with )
So=n/2. 2.2.1.4)
This is the case considered by S. Karp and others'®.
B) hxda/r, a=8a/r, ag,:=0, for n>l, (2.2.1.5)
and .
Cuw =1280%/7 . (2.2.1.6)

In the same way, we may obtain the approximate values for the problem C. However,
since we neglect higher order terms in (2.2;1.1) to (2.2.1.4), we cannot expect their accuracy
up to the degree written down. :

In other words, as seen in-(2.2.1.6) compared with (2.2.1.3), the longitudinal variation
of the displacement distribution does not affect appreciably to the wave resistance in very
high speed. '

Secondly, suppose g is very large, then we can observe in the Table that the wave re-
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sistance correspond to Mathieu function of lower order is exceedingly smaller than the one
of higher order when the order is not so large.

Hence, we have an almost minimum value whenever we take for the distribution a
Mathieu function of lower order as far as possible.

Asymptotic characters of various quantities are as follows;

A) a¥=(rg)t/z, af=0, for n>1, (2.2.1.7)
Cw,=64¢% exp. (—29), (2.2.1.8)
8o=4/20), (2.2.1.9)

B) ¢w;, =64g* exp. (—20) , (2.2,1.10)

C) Cw, =16g°% exp. (—20), (2.2.1.11)
mi=1/(4g), (2.2.1.12)

and
35/ 2/2) / (1—%;) ) (2.2.1.13)

Owing to their exponential term, these values of the wave resistance are very small
compared with the existing ones in very low speed in spite of infinite draft. |

2.2.2 The problem II b). Consider the problem to minimize the wave resistance with
given B or 3. This is the problem considered by G. Weinblum®. '

Introduce Lagrange’s constants and proceed in usual manner, we have

Qg =[24; AP+ 2z Cl2n(n/2, @)1/ t22n « 2.2.2.1)

Put this into (2.2.9), the influence function becomes to
I(—cos)=A1+4: gucep,,.(:r/z, q)ce(0, @) . (2.2,2.2)

The last series is rewritten by changing the order of summation and using the ortho-
gonality relations as follows, '

== . - = ]

ij‘,ocez"(n/Z, q) cesn(8, @)= ﬁo ST ST(—1)r ARV AR cos 238

=0 s=0 n=0
=—;—+ i (—1)" cos 2rf
r=0
1 l:sin 2N +1)(6—:r/2):|

S A T /D)

. (2.2.2.3)

This series does not converge to any smooth function, however N becomes large. The same
difficulty will appear in the case of which H(z) vanishes at end points.

Accordingly, we may expect that the numerical solution in these cases will show the
instability as observed by G. Weinblum®.
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Meanwhile, the wave resistance converges to a finite value, namely, putting (2.2.2.3)
into (2.2.1), we have by making use of Dirichlet integral,
c,=8¢%21,+4:/28),

and then determining the constants from (2.2.5) and (2.2.6), finally

Co=Cus+ 4762 Co, o(%— ;—0)2/ (oo E—DY) (2.2.2.4)

where
B= 31 [oean(/2, )1/ pin - (2.2.2.5)
2.3 The case of finite draft. The preceding analysis is very clear and easy to compute

numerieally, but unfortunately usual ships have very shallow draft and it seems hardly to
apply such results.

Therefore, consider the case of the distribution draftwise uniform and of their draft ¢
for a moment.

We have in the same manner as in the preceding the wave resistance coefficient as

Cyp= %_5_1 H(x).F(a:) de, . (2.3.1)
where

I‘(m)—L—SIIH(E)K.l(gm_-—E, gtydé, (2.3.2)
with

K_'1(u, T) =P_ 1(%, 0) —2P_1(u, T) +P_1(u, 2?) . (2.3.3)

Owing to the singularity of this kernel, we may expect that there will be a minimum
solution, but here we will consider no accurate numerical value but only some approximate
characters.

Firstly, when the speed is very high and g is small, we cannot treat as in the preced-
ing, because we have no simple approximate expression of (2.8.8) for the usual magnitude
of the draft. But, when the draft is sufficiently small, we have another simple results, and
this problem will be left in §2.4.

~ Secondly, when g is sufficiently large and the distribution is expanded by Mathieu func-
tions as (2.2.3), we have, considered only even functions,

c,=4ng* % % G2 Gom Man, om , (2.3.4)

n={ m=0

where
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A$2H)A82m)
09211(71'/2, Q') Cezm(x/zi Q)

If we put (C. 8) into (2.3.5), we obtain

My, 2m=2 [ ] jm (1—e 0t eosB ¥R Coy(u, q) Ceznlnt, q) du . (2.3.5)
0

—1yrtm
Mn, 2m$ ( )

ce24(0, g) ce2m(0, @) Lign_2n(gt) , (2.3.6)

‘where

T

sz(gt)_—_%j: (L—g~9t5c1032 cog 200 df . @2.3.7)

The last function is duduced from the error function as easily seen, and when gt is
sufficiently larger than one,

0, for v=:0,

2.3.8
1, for v=0, ( )

Lagt) = {
gt>l

Accordingly, the conclusions for the case of infinite draft hold good.

When gt is very small but ¢ is very large, this functions is proportional to Jgt and of
the same order for v, which is not so large.

Hence, the fundamental character, the lower the order of Mathieu function the smaller
the wave resistance, would not change.

2.3.1 Two classes of the wave resistance. The use of Mathieu function is very con-
venient theoretically as explaned, but not for the purpose of numerical computation,

In this circumstance, we remind naturally the simple Fourier expansion.

Assume the next expansion

B oo
H(x)— e Eﬂan cos ndf , x= —gos d. (2.3.1.1)

Then, we will easily find the next formulae in like manner as (2.3.4),

cw=8g2 iﬂ i;oan T Rn, m s , (2.3.1.2)
where
R, n=Re. i“'mrJ,,(g cosh %) (g cosh u)(1—g-vtcoshzey2 gy (2.3.1.3)
1]

Consider that both g and gt are very large, and using the assymptotic expansions of
Bessel funetions, we have

R, n=0, for (n—m): odd integer,

Roy 5 (1/20)] (=12 Po2g, O+ ] tor oy even. (2.3.1.4)
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Namely, all of the function R, . are nearly equal each other for even or odd suffixes
respectively, which are not so large.
Thence, for example we have, taken N even functions,

N N
Cw¢892R0,0§_:;|] Z}uaznazm, for 2N<g, (2.3.1.5)

This vanishes, for example, when

N .
Sz, =0, or H(+1)=0, (2.3.1.6)

n=0

namely, ¢, becomes to zero with respect to the order g, but 1n general not to the lower
order, and at most it will be

cw = 0(1). (2.3.1.8)

Continuing this procedure, we will have the distributions which have sharper ends and
are finer and that their wave resistance of the next order,

c=0{g™™, 7: some positive integer, (2.3.1.8)

These belong to a different class with the exponental ones obtained in §2.2, and will
be higher than those in increasing g.

And we are easily seen that the distributions represented by polynomials belong also to
this clags'®.

2.4 The case of small draft. When the draft is sufficiently small, the minimum pro-
blem has another interesting feature.
Assume 4z/u? is very small in (2.3.8), and we have an approximation by (A. 9), that is,

K_1(u, T)#TZP-s(%, 0) . (24.1)

Thence, we may rewrite (2.3.1) and (2.3.2) as follows,
R= pgj He) [@)de, @.4.2)
where
r@=e/m| HOP.(a=E 0z, 2.43)

and H(a:) equals approximately to the sectional area, or if we consider this problem as the
limit of the pressure distribution, it equals to the water head of the lift per unit length.
We write its total sum as

jl Hw)dz=7. | 2.4.4)
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Consider (2.4.3) as the integral equation for the given I"(x), and H(x) may be determined
except the funection (B. 11) from the result of Appendix, and that this undetermined func-
tion contributes nothing to the wave resistance by (2.4.2), because it does not to I'(z).

The waveless distribution can not have a finite displacement'®, but these can do.

However, the integral of (2.4.3) has not a definite value, if H{x) and its derivatives do
not vanish at end point owing to the singularity of P_;.

These conditions are counted four, and the arbitrary constants in (B. 11) four too, so
that we may have a unique solution. ]

For the purpose of calculation, rewrite (2.4.2) to (2.4.4), integrating partially,

R=pS:H”(x) r@ds, 2.4.5)
r@=—{ mreP.gs=§0d, 2.4.6)
17=-%-5:H”(m) x2dx, (2.4.7)

with the conditions
H(xD)=H'(+1)=0,
o , ) 1 2.4.8)
S H”(m)dm:j H'()zds=0,
-1 -1

Assume the expansion

H'"(—cos 0)=F i dencesn(f, @), q=9%*/4, ' 2.4.9)

=0

then, (2.4.7) and (2.4.8) are written

1 ©0
j HY(@)dn=r7 3 dao AFV=0,

. L (2.4.10)
j H' (@) 22 do=(a77/4) 37 dun AFV=277

=1 n=0

Consider the minimum problem under these conditions, and it is solved in the similar
way a8 the problem C in §2.2, then we have

I*(—cos ca)=%+,a2 c0s 20 , @.4.11)
don= (A1 AFV+ 22 AF™) /P pon (2.4.12)

A1= _SVCO, 2/(”4) ] 32=81700, 0/(77-4) ’ (2-4.13)

and
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R=4pl'%, or R/[pgl (V/8)]1=16¢w./g°, (2.4.14)
and that, comparing with (2.2.32), we see
don = 455, . (2.4.15)

Finally, we define the coefficient, which equals approximately to the prismatic coefficient
of the ship form,

b9

e, =P/2H0), HO)=F éﬂdmfceznm, 4)cos 8d0 . (2.4.16)

These quantities have been studied in detail in § 2.2.1, and values of (2.4.14) and (2.4.16)
are shown in the Table.

Consider here only the case when g is very small, then we have

I (—cos 6)=(47/x) cos 28, (2.4.17)
H'"(—cos §)=(8F/x) c;)iiz: ,
-y (2.4.18)
H{~cos 0)#(2V/x)(sin B_E sin 38) .
B/lpgr (F7/8)1=128/(xg), (2.4.19)
and
e, = 3x/16. (2.4.20)

The value of (2.4.19) might be very high compared with the one of (2.2.1.8). Moreover,
it will be seen much higher than that considered in §2.3, when g is very large, but it
should be remembered that the value of (2.4.14) decreases exponentially as g increases, and
so it will be smaller than the class like (2.3.1.8) in the range of very low speed.

. Chapter 3. Pressure distribution

The velocity potential of the pressure distribution is represented by the one of the
doublet in z-direction on the water surface'®, and therefore the wave resistance has the
same form as the one of the preceding chapter.

Thence, the discussion like in §2.1 might hold generally. We do not repeat here such
discussion, and proceed to simpler cases.

3.1 The distribution with large aspect ratio. Consider the case in which the wave length
generated is sufliciently longer than the longitudinal length of the distribution, so that we
may put as

j p(z, y)e " 0 dp=pgH(y) , : (3.1.1)
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where p(z, %) means the pressure per unit area.
Then, we have in the same way as in the preceding chapter,

R=pg| H@)Gw)dy, 3.12)
6o=L[" HoP.0, 057,00, (3.1.3)

where we take the half breadth for unit length.
The minimum value of (3.1.2) will be attained, when

G{y)=C: Constant, (3.1.4)
under the conditions
1
7= Hua, (3.15)
and
HZ1)=0. . (3.1.6)

The last condition is the one by which the integral (3.1.3) has a proper meaning,
The integral equation (3.1.4) is solved in Appendix B, and has the next solution by
(B. 21), that is,

2 ke n (1)
H( —Co8 0) = m ugo(ﬁ 1) (2CA0 '+ ac?,n) ceéy n(ar - Q')/'?Zn ' (3- 1, 7)

where a is an arbitrary constant and g=(g/4).
Two constants C and a are determined by (3.1.5) and (3.1.6), that is,

7:“5? io(—l)“mcmazm)%acznAB‘"’"’J/lzn’

o0 (3.1.8)
0= 3 (—D)"(2CAF+acs,) cez,(0, —q)/Aen .
n=Q
Then, the wave resistance is given as
R =pglC. (3.1.9)

If the condition (3.1.6) would be removed, we have a quasi-waveless solution in the
same meaning as in § 2.4.

These are in neat forms mathematically, but not so practical, because the speed range
to be considered for such distributions is generally very high, Hence, consider that g is
sufficiently small, and we may have an approximate solution by making use of results in
Appendix C, but it is too cumbersome to caleulation. _

It is easier to calculate by making use of the next approximation
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K(gy/2) #0 —log [rgu/4], log 7: Euler’s constant,
Dy—l

Then, it is a simple calculation to find

H(—cos 8)=(2/z)sin @,
C ;QV/Zn '

and

R==(4g9/x)pgv (/8) .

19

(3.1.10)
(3.1.11)

(3.1.12)

The solution (3.1.10) was obtained by H. Maruo®, and, as he said, the wave resistance

is very small compared with the ones in the preceding chapter.

3.2 Symmetricél distribution over a circular disc. The last problem we consider is the
case of the distribution symmetrical about the origin over a circular disc with unit radius.

The wave resistance is given as

T

=
R=£‘?—r | F(g sec® 6, 6)|? sec’ 04,
0

k3

where
1 =i +
Fle, 6)=— | | P&, )entecseceorvuas oy
Putting p(x, ¥)=pgH(r), r=422+%°, and integrating on the circle, we have'®
1
Flx, 0)=F(x) =27rj H) Ty rder,
0
Now, if we expand as
H (sin £>=E i &, Py{cos 8},
2 K n=0
where P, means Legendre function, and put this into (3.2.2), we have!®
2 o
F(fc) = _ﬂ: E anJ2n+1(’c) .
K n=0
The displacement is caleulated as
1
!7=27rj Hryrdr=ra,/2,
0
and the wave resistance

R=P§ i (=" @n@n Ba,m ,

w=0 m=0

(3.2.1)

(3.2.2)
(3.2.3)‘-
(3.2.4)
(3.2.5)-

(3.2.6)
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where

n

L
R,,,m=(—1)“*m%-52 Jans1(g £6¢% 6) Jom 1(g se? 6) sec 00 . 3.2.7)
0

For a while, we consider as g is very large.
Then, we have an asymptotic expansion for R, », when its suffixes are not so large,
that is,

Rn,mé[lm—z% sin (2g+%;—)+---] . (3.2.8)

The situation is similar to the case §2.3.1, so that we may have similar conclusions,
that is, the lower the pressure near the periphery becomes, the smaller the wave resistance
reduces.

Nextly, we introduce the influence function.

1
R=2npgjoﬂ(r) Gr)rdr, (3.2.9)
1
G(r)=2gj H")K*r, ') ridr | (3.2.10)
[1]
where
K*(r,v")= gzj.: Jo(gr sec? ) Jo(gr’ sec? #) sec® #dF . (3.2.11)

This integral does not converge, therefore introducing the next function

T

Kr, fr’):!2 Ji{gr sec?® &) Ji{gr’ sec? ) sec 8d¢, (3.2.12)
¢

we define it by differentiation as follows,

1 d 1 d
* (= % R dipoy, ’
K4 m)=(5 57 ) (5 ) KO, 7). 2.2.13)
Since
. 1 ] 1 T ' R
Jdrcr)Jﬁxr’):;j ToeB) cos pdp=—r | |"eteneosn cos pdpdu,
0 0J0
where
R=Jr*+r2—2rr'cos ¢,

and

Sge"z sec? 4 goc ﬁdﬁ:egjm 6z gy 7;_"51'{51)@/2)

0 Q
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putting these into (3.2.12), we have

K(r, 'r’)=4LS j e%q’ms“ﬂgn(g—R—c"s—“) cos ¢dpdu . (3.2.14)
T JoJo 2
The minimum will be attained when
G(r)=C: Constant, (8.2.15)

under the condition (3.2.5), and given as (3.1.9).

The integral representation of (8.2.14) is not always convenient, but usefull in the limit
‘when ¢ is very small.

Then, we have the next approximation

i ¥ Reosu (13(2 )-—L (L . )
o €z H chosu Fo log 4gR cos U |, log y: Euler’s Const.,

80 that K{r, r') may be integrated as

K(r,r)= —%j:j: log (%gR cos u) cos ¢dedu

_ { r’/dr), for r>r/, }

3.2.1
r/(4r"), for r<r/, ( 6

by the well known integral.
Put the above kernel into (3.2.13) and (3.2.10), and consider (3.2.15), then it is integrated
as

%Cr:-g-er(r’) rdr, @217
rJo

The solution of this integral equation is easily found, that is,
H(r)=C/yg. (3.2.18)
The constant is determined by (8.2.5), namely
C=gl/r, (3.2.19)
Putting this value into (3.1.9), we have finally
R=(4g/m)pg" (F/8). (3.2.20)

This is coincident with (3.1.12), so that we may have the same resistance in both cases
when the breadth of each distribution is the same. In fact, it is easily found that the
distribution (8.2.18) integrated in x equals to the one of (3.1.10).

Conclusion. We have studied various minimum problems of the wave making resistance
as far as possible, and had conclusions as follows.
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1. In general, the minimum problem of the wave resistance has no solution, so that
we may always obtain the distribution with smaller resistance than any one theo-
retically.

2. Since their magnitude will be of various order, we will be necessary to distinguish
them, that is, the singularity distributions which represent some ships should be
classified by the magnitude of their wave resistance.

3. In some cases, we have the minimum solution, and these solutions present one of
such classes. :

4, It will be expected that the numerical solution may be unstable in various cases.
This is a natural consequence of the conclusion 1., that is, the difference between
any two solutions for one problem might be of the lower order in its numerical
value of the wave resistance.

These conclusions will be considered one of the extensions of those in the former paper

in which we saw many examples of waveless distributions!?,

The author thanks to Prof. Maruo for his kind discussions and suggestions especially
for the problem of §2.4.
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Appendix A. Auxiliarly functions. = We define the functions P, by the next integrals,
Pon(z, 4, 1) =(—1)"j 2 g-teectd sin- (x sec &) éos (¥ sec? 4 sin @) cos*™ #dé,
1]
(A. 1)

x

Py iz, y, 1) =(—1)"”j 2 et %" cos (x sec §) cos (¥ sec? @ sin 6) cos***1 #d4,
’ 0

where £>0 and n, m: integer.
When the confusion does not oceur, we deseribe as
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P.(x,0,0)=P,(x), P.(x,0,)=P,(x, 1) .

P.(x) is introduced and discussed by T.H. Havelock?, and P.{z,f) by the author!?,
Firstly, we have the relations by differentiation

8 p_ 6 P p_0
'a_mPn—Pn—ly 6_t axgpn— 6t Pn!

2 2 2
( R

Pn=Pn-2 3

ot

Frr 6_;;2)P"=0'

Nextly we consider only P_;, and then other functions will be derived by the above
relations.
We may write from (A. 1) changing the variable

o

t
P_i(z,y, t)=%e_? Re.j exp. [—p cosh (Qu—1y)+12 cosh ujdu ,

where 20=4t'+y%, tany=y/t and =,y, t>0.
Since

exp. [—zcosh ¢]1=I(z)+2 él(—l)" I,(2) cosh ny,

and

I.(2) =;/%Sm 6-%}J2n(v) dv,

0

putting these into the above.representation, we have

¢ 8 Yo(R)dv, . (A.9)

P_i(x,y, t)= -—%,\/%e'éij

where

R=«/x2+1:2—2xv cos % .

Expanding Yo(R) by the addition theorem, and integrating term by them, we have two
expansions,

P 3 0)=—5¢8 | L)o@ +2 S 1:0) Vanle) cos 7 | (A 9
P, =5 | K@) +2 5 Knlp)Jene) cosnr | (A 5)

It is easily seen that the former does not converge, but gives asymptotic expansion,
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when 22/(4/¥*+*) is very large.
Thus, if p vanishes in any fixed x, we have

P_y(x,0, 0)=~—%Yg(m), (A. 6)

Other limits are
P_,(0,0, t)=—;—e-';'Ko(t/2), A. T
POy, 0=7 Ku(u/2), @A 9

When y vanishes, we have another expansions!” from (A. 1), as easily seen,

o gm
Pﬂ,(m, t):nr;E:o mPﬂ-zm(w, 0) y (A' 9)2)
=] N YL R
Pzn(ﬂ.?, t):ﬂgo%um_n(t) 3
o (—1)mgem (A. 10)
P2ﬂ+1(x: t)=mE=o__(2_’);t)I—Um_ﬂ_l(t) '
where
Un(@)=(—1)"P_3n_.(0, 1), (A. 11)

The expansion (A. 9) is also asymptotic.

Appendix B. Integral equations, Conéider the integral equation
Jflh= %'rP_l(g cos #—cos &) () dd, (I)
¢

This is solved by J. Dérr™, here we give another method to obtain the same result.
Let us evaluate the next integral

L.(a)%fp_l(g s 0—cos Dicen(d, Q)d3,  q=g'/4, ®. 1)
[1]

where ce, means Mathieu function, and all notations are followed to the text by McLachlan®.
Since

P.;(m):j: cos (x cosh w)du ,

by (A. 1), putting into (B. 1) and using next formulae®
ce2n(ﬂ/2! Q) jﬂ

Cezn(z, )= AT 0cos. (g cosh z cos u) cezn{u, ¢)du,
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Feyzn(z, @)=

_ 3092:‘5;{ f’ e Sw cos (g cosh z cosh u) Cezn(u, ) du ,
h 0

we have

I2n(iz)= _%[ AP :leeyZH(z! Q) ’ (B. 2)

cean(n/2, q)

When 2 is imaginary,

Feysa(0, 3
Mcezn(ﬂ, q) .

Re. [Feys.{—18, @)1= )
therefore we have
Lon(8) = pr2n ce2n(0, @), . (B. 8)
—_ _E ASZ“) zFey?-‘ﬂ(Oi q) o]
Han="" [0321:(77/2, q):' cez(0,9) ° (B. 4)
In the same way, we have
I2n+1(0)=,uzn+1 ceznia(f, @),
_ _EI_: kAP :|2 Feysn.100, @) ] (B. B
Pt =8 othurs(n/2, @) cornnn0,9)
In another way, since
2 4
=2 1,60, centt, )08,
integrating in & and &, we have
_ AE)EH) 2o 5
o=t G ), O 0, . 6

_9 kA§2n+1) 2 DoC 2 . d
pons =2 g ey ) O

The similar integral equation
F(0)=%S P_(gcos G—cos ) ()d3 , In
0

are easily solved by the same method as used by J. Dérr™.
Consider the integral

I,E*)(ﬁ)=—;—j:Ph5(g_cos T—cos 5 cen(9)dS , B. 7

then we have by differentiation of (B. 1)

4
1}5"(6)=§;(—c%,—> I8, =x=—cosf. (B. 8)
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Hence, we have formally by (B. 3)

I,gta(ﬁ):ﬁ}({!—)!ceﬂ(@, a. (B. 9)

However, the solution of (II) does not determined up to the funetion which becomes to
Zero by differentiation as (B. 8), that is,

aft+aiztal :_1:2+a3 #*=a,+a; cos ﬁ-l—_az cos 2/ +-a3 cos 34, (B. 10)

where a’s are arbitrary constants.
Since®

1=231 Af"cesn (6, ),
=0
cos 2rf= ﬁ AfVeen(h, q), for r>1,

cos (2r+1)0= }:} AP ceenn(f, q),  for »>0,

the-undetermined function will be

©o

2 %(Zau A32n3+a2 A&zn)) 032:1(0: Q)"" i P 1

u=0 Lz =020+l

(@1 APV +03 APY) ceznn(6,9), (B, 11)

Nextly, consider the integral equatibn

f(ﬁ)——J ( o8 0—cos a‘) o@)dg, (D)
In like manner as fhe former, define the integral
Jzn(ﬁ’)-——j. Ko( Gon 0= _003_19)062,,(:? _g)ds, (B. 12)
where g=(g/4)*=Fk".
Since
] 27)
—l-j cos (2k cos @ sinh ) ce. (0, —q)df= M"—CQH(%: q),
fTJo ce 211(0 )
l oo . _ ( 1) " A _
- L cos (2k cosh z sinh u) Ceg,(u, @) du= WFekz,,(z, q,
and

. Fek n 03 _
Re. [Fek (—i8, —q)] =—:?:(0(—~T?)Gezn(0, —q),

we have
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Jan() =22nce2n(0, -q), (B. 13}
with
_x[  AF® P Feky(0, —q)
Aon= 2[ ce2n(0, g) ] ce(0, —q) ’ (B. 14)
or .
AP TP, _tam [cez,.cn/z, q)T -~
| ety G O du= ceun0,q) 1’ (B. 18)
Lastly, consider the equation
1 (e —
FO=~{ P-0,09=7,0¢(5)d5, vy
and define the integral
TEO=2{ P40, 67, 0)cen(8, 0045, (B. 16)
where y=-—cosf, 7=—cos .
Since
[ (9 .
P_y(0, gy, 0)—5 cos (—2— sinh Zu) cosh* udu
0
_3 1 ~1(_2 d »
= KoK= (1- Z ) Kb . @ 1)
Hence, we have
1 2
FO=5(1- 5351,
(B. 18)

1 2 d
Jzﬁ(0>=§(1—ﬁa?)Jzﬂ(0) -

These are differential equations, so that their solution consists of homogeneous solutions.
and a special one.

For example, put in (IV)
| F(#)=C: Constant, (B. 19)
then we have tile solution of (B. 18) as .follows,
| f(@)=2C+a cosh (gy/y 2), (B. 20)

where o is an arbitrary constant.
Since '
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8

1=2 (-—1)"‘4%2“)0321@(0’ _Q') ’
]

n

and
cosh (g cos 8/ 2)=2 glo(— 1) e2r ces,n(B, —q),

where

52!1)

- _1 =
0.0 Cez(sinh™14/ 2, q),

_2( 9 A —
Con= - jﬂ cosh ( 7T cos 0) cesn(?, —q)df =
we have the solution of (IV) as

$O)=2 33 (~ 11 @RCAF+ a02) 0008 —)/an,

Appendix C. Approximate relations of Mathieu functions, Almost all formulae in the
following are found in the texts®®, but some important results not found. That is the

reason why we rewrite them,
Firstly, if ¢(=k? is sufficiently small, we have®

celd, =1/ 2, } ©
cen(8, g)=cosm@, for m>1, )
Cenlu, @)= phoJnlte”), } ©
Feyn(u, q)=phVnlke), |
where
DEY/ 2T, ph=1/ak), for m>0, (C.
and
cex(0, @)=ceu(n/2, Q)= AP=1/42 , ) } C
cesn(0, @)= conn(n/2, @) =1, ARV=J(k), for n>1. )
Then, (B. 4) reduces to
to=—log (k/2),  logr=C: Egler’s constant, } ©
pm= —(r/2) (k)Y n(k)=1/2m,  for m>1. )
Even if ¢ is negative, these relations are valid, and so we have from (B. 15)
I = pm/2. | (C.

Secondly, if ¢ is sufficiently large, but m or # not so large, we have

. 2m+1 2m+]
cen(d, q)%-zmc,;"‘Ta[e” sin § (cos (g—-l—g)) +e‘“1”(sin (g+%)) ] . {C.

1)

2)

3)

4

5)
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. Cm . _ _ z
Cen(z, q)Tﬁzm, Py 1/_66%5? cos [g sinh z—(2m+1) tan! (tanh E)J , (C. 8
where

—(_.1yr02n-% Cezn(o, Q)f:_G_%ﬂ(ﬂl/zv Q)
Cz"’ ( 1) 2 \/ﬂ_kAB%J ’

o n c621’7--'-1(01 Q) €4n (E/Zy Q)
Cany=(—1)"*122 4 kv;kAzz:}n .

(C. 9)

Put 4 and 2z equal to zero in (C. 7) and (C. 8), then we have
Crn=2""% cen(0, ), | (C. 10)
and also from (C. 9)

cesn(n/2, @)= (—1)yrk AP, } (C. 11)

Cehns1(7/2, @)= (—1)"* fefnk AP
Nextly, integrating (C. 7), we have
AP feesn(0, ) = eI (n+-}é-) / [z27+1(2k)"+3 7],

(C. 12)®
A5 0g,, 10, q)#e“r(fnﬂtg) / [x2n(2ky+#] .

Moreover, we have by the recurrence formula®
AP=2AG[—14(8n42)/Yq ++--]. (C. 13)
In the neighbourhood of #==z/2, we have the other approximation, that is

/onE
cen(d, @)= (’:/’1_2,) Du@), 2=2/F cosd,

where (C. 14®

Do(@)=(=Ly"ei(d/de) e = .
Hence, we have at 0=nr/2,

cesn(n/2, )= (—1)"(nk/2)3/@n)l /(2" n)), }
einir(n/2, Q= (1) Wk (xk/2)2/ @n+ D) /2 1al) .

Putting these into (C. 11), we have

APP= @)l /{2 nl)2xk)E] }
APo=J D /L@ ) E T,

(C. 15)

(C. 16)

then, from (C. 12)
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3n+l
cen(0, @)= @Tqﬁknmnmt -

gm 3 (C. 17)
Ce24.1(0, @)= Wk’”é (2nk)ke 2
Lastly, put (C. 8) into (B. 6} and integrate, and we have
prn s Teen(0, )T
and by (C. 17) this equals approximately to
L g VT @RPE | g [ k)t vy ©. 18

Fan= 2n)! e ", Henel= @n+1)!
and also

Zon = (201 (= /2R)/ (27 2(mA)2] (C. 19)



