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Abstract

The author tries to verify two leading principles of Taylor’s method of the
series models experiment in research work of the residual, that is wave making,
resistance of ships in view of the wave making resistance theory.

The one is the principle to deform the midship section keeping the sectional
area curve unchanged without sacrifice of the wave resistance, and deduced theoreti-
cally from the invariant character of the wave resistance.

The other is the one to deform the shape of the sectional area curve with least
sacrifice of the wave resistance, so that this one may be the same as to obtain the

optimum ship form, and deduced from the solution of the minimum problem of the
wave resistance mathematically.

1. Introduction The theory of the wave making resistance has been able to estimate
unsatisfactorily the experimental values in their quantity except few cases by now. These
defects of our theory, of course, might be caused merely from a mathematical incomplete-
ness to be conquered in near future, but the theory which we have now used in itself has
an approximate character so that we may not proceed any farther from some stage.

In spite of these defects, the theory has thrown bright light on characters of the wave
making resistance of ships.

In the other hand, the experimental method of ship resistance research had established
by D.W. Taylor in his famous book?, and this has been almost only one guide to the practical
problems, but none of its fundamental ideas has been examined by the theory since then.

The object of this paper is a trial to this problem, so that we may have better under-
standings and expect farther progress in this science. '

For this reason and the theoretical difficulties well known, we consider only ships of
the so-called displacement type by doublet distributions proportional to the breadth over
the longitudinal vertical center plane of the ship. Accordingly, the results we will obtain
in the following have merely the relative character and no quantitative basis.

2. Taylor’s method of experiment First of all, we must remember the Taylor’s idea®.

He gives five factors affecting the resistance of a ship which has a given displacement
and speed, namely,
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length
area of midship section or prismatic coefficient
the ratio beam to draft

LS VU R

the shape of midship section
5 the details of shape toward the extremities .

The first factor relates to relative importance between frictional and residual resistance,
then we assume the length fixed too, because we consider only the residual or wave making
resistance.

Now, he states that the third to fifth factor are of minor importance compared with
the second factor which is most important as regards the residual resistance.

This idea, saying in more detail the longitudinal distribution of the displacement is
dominant factor for the residual resistance, has been a leading principle in practice.,

We call this hereafter the sectional area curve hypothesis, because we have not had
proper theoretical basis for this idea.

On the ground based upon these experiences, he proposes the method of experiment by
the so-called series models. He introduces 3 parent ship form which might be an optimum
practically and derives from it various forms in two ways.

The one is to change the proportion of breadth and draft, but to keep its shape and

fullness coefficient, so that the residual resistance may not change so much by the above
hypothesis.

The other is inversely to change its shape and fullness coefficient by relocating ordinates
of the sectional area curve. This might cause any change of the wave resistance, but it
might be done naturally as the way in which the resistane would not change so much as far
as possible.

We will call these laws to deform the shape in these ways the deformation principle,
then it will be easy to see that these may be deduced from variational principle mathemati-
cally. Moreover, the parent form may also be deduced from the variational caleulus.

Namely, his method is essentially a variational one, so that we may have some contri-
butions to these problems from the recent two papers®»®,

Before treating the variational problems, we will treat them by the classical way in
two succeeding paragraphs.

3. Sectional area curve and water line curve Suppose a doublet distribution 7(z, 2)
over a rectangle on the z-z plane, then its wave resistance is given by the formula,

T

4 =
R 404 jz | F(g sec? 6, B)? sec’ 0, @3.1)
0

where
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~0 1
Fls, 0):} cj e, 2) et R dyd, (3.2)

we assume the velocity and the half length of the distribution as the unit, and p is the
density of the water, g is the gravity constant in this unit system, then Froude number
equals to 1/y2g, and ¢ is the draft to the half length.

As usually done, we assume hereafter that the doublet strength 7(x,2) equals to the
half breadth of ship considered approximately.
Now, assume the expansion

7w, 2)=Po(L+22/) 7o() + Py(L+22/8) (&) 4+ - - ,

2 0 (3.3)
D)= gy | 7 DL 22/00
where P, means Legendre polynomial.
Put it into (3.2), then we have
Fg, 0):%[To(/ct)Fo(/c cos )+ T1(xt)Fi(x cos )4+, (3.4)
where
1
Falie cos 0):5 P() €-1575950 gy (3.5)
-1
and
0 x
Tn(/ct)zfcj Pl+22/t) e de=ymrt e 21, 1(ct/2), (3.6)
-t 2

because we have the expansion

L]

exp. (1) =/ 25 33 @mADL, 1 (0)Pau)

me=

and the orthogonality of Legendre function, where I,.1 means Bessel function with imagi-
2
nary argument.
Then, we have the next approximations,

To()=2, Tu(2)=2(z/2)"*'/[(2n+1)@n—1)---1], for z=0, (8.7
and

To2)=Tu(z)=1, for z>1 and n, (3.8)
Now, if the velocity is high and the draft is small, the value of g and gt is small, so

that we may neglect T, compared with Ty, and we have an approximation

Fk, 6) #%To(Kt)Fo(IC cos ), (3.9)




22 M. BEssHO

with
‘1
Fiole cos «9)—_—j 70() €520 gy
- } (3.10)
2 [i]
=7 12z,
and
_ dpog® (T 5 |
B=—=—|" T4yt sec? 0)| Fo(g sec8))? sec b de. (8.11)
T 0

Here, the function 70() is the sectional ares divided by the draft, so that we may say
that the wave sesistance at very high speed and of small draft may be determined approxi-
mately by the sectional area curve and the draft. Moreover, put (3.7) into (8.11), we have

442 pa—
ol A jz | Fo(g sec 6)]° secs 7, (3.12)
brs i

This integral diverges unless 7o(x) and its derivatives at both end points vanish, but it

has no more relation to the draft, and has been proposed by H. Maruo as the so-called
slender ship theory?®,

On the contrary, if the velocity is very low and the draft is sufficiently large, that is,
gt is much larger than the unit, making use of (3.8), we have

1
Flx, a‘)#%j 7z, 0) e“"“"”dwz%ﬁ’w(ﬁ cos ) | (3.13)

because we see

7@, 0= S P07.6)= S9.(w),

and then

) E
Rr=4r9 r;Fw(gsecﬂ)lzsecada, (3.14)
0

T

Hence, we have the well known character that the wave resistance in low speed is de-
pend on the load water line curve 7(z, 0) and not on the draft approximately.

In practical cases, the value of gt at the service speed nearly equals to unit, so that
we may apply the above approximations in the sense that the speed is high when it is
higher than the service and vice versa.

Meanwhile, the former approximation, say the sectional area curve approximation, is
very similar to the sectional area curve hypothesis, but its validity is confined itself in the
limited speed range as we saw.
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4. Pseudo-Taylor series distribution
is an direct application of the theory.
Consider the distribution

1
(e, z):‘—;tg(l—xz)”_?, v>-—1/2, for 0>2>—1,
=0, for 2<—1,

where A4, is the midship sectional area, and v is a parameter.

23

Let us see the other interesting example which

4.1)

This group of curves with various v values is similar to Taylor’s prismatic curves
especially in medium prismatic coefficient as we see in Fig. 1, so that we would be able to

deduce analogical characters of the wave resistance from this group.
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Now, put (4.1) in (3.2), we have

Ak cos ),

Flk, 0):0542{";&@-

where

A,,(x) - MJD(Q;) s

(z/2)
1( ool JZTTp+1/2)
CP:V/zA":"z—S_I(l_”) N ARSI

+0.5

4.2)

4.3)
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J, means Bessel function, I the displacement and ¢, the prismatic coefficient.
Then, we have the resistance integral in the next form,

R/[ng(V/L3)]=§g—3—jT[§£ To(gt sec? 6) 4,(g sec 6)]2 sec 9d0 4.4)
i 0

where L means the length of ship.
In the practical cases, the value of ¢ is greater than v and unit, so that we may have
the approximation from the property of Bessel function, that is,

. 2'(v+1) T =«
Av(x)?m*;é');;—; cos <x—u—2———z> ,

using this formula and integrating (4.4) by the stationary phase method, we have

—e 0] ?L: . T
R0/ I 5= DR 1S T 2 i (a4 %) |,

for g>1 and v, (4.5)

This formula suggests characteristic properties of the wave resistance obtained by the
series experiment.

Firstly, using the approximation (8.7) at sufficiently high speed, we see the wave re-
sistance per unit displacement is nearly proportional to the displacement length ratio.

Secondly, the first factor in the above formula has a minimum at some value of v in
any fixed speed, namely, there is an optimum v, or c,.

However, its value will be extremely small compared with the experiment, but this
seems to be clear if we compare two groups with smaller value of ¢, in Fig. 1.

Thirdly, we see from the last factor that the amplitude of hump and hollow in the
resistance is nearly proportional to Froude number and the inverse of ¢,, and the speed of
its hump and hollow depends on the speed and the prismatic coefficient.

5. Deformation principle As considered in paragraph 2, the first deformation principle
which is a synonym of the sectional area curve hypothesis should be based upon the invariant
character of the wave resistance. »

We find it in the author’s paper®, so that we may follow and apply its results.

Suppose the function o(x, 2) defined as the solution of the next differential equation,

0 1 ¢

9z, 2)= <5g—?‘5x—2>0(%‘, 2), (5.1)

with the boundary values

o(x, —t)=a(x1,2)=0(x, 0)=—6%a(:*_:1, 2)=0, (5.2)
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then the distribution does not leave the regular wave system and consequently has not the
wave resistance, namely, the function F' defined by (3.2) vanishes.

Hence, the wave resistance of some distribution is invariant, however we add to or
subtract from it such distribution multiplied by any constant.

We call this procedure the invariant deformation, and let us consider its property.

Suppose o(x,2) which has the boundary conditions (5.2), and represented as the next
form,

o(z,2)=X@)TC), (=@E+1/t, (5.3)

where we may not loose the generality by such partition of the funection, and the conditions
(5.2) are satisfied, whenever we have

X(x1)=(d/dx)X(+£1)=T(1)=T(0)=0. (5.4)

It is very easy to pick up functions satisfying the above conditions, but the function 7
should be confined itself in somewhat narrow class.

Now, integrating (5.1) and using the above conditions, we have simply the sectional
area

0 ¢ ' 1
)= o, Ada= —2x@)| T, 5.5)
and the total displacement
1
S A =0, (5.6)

namely, we can not change the total displacement by this deformation, but can do the
sectional area curve, and that this change of the area will be small if the speed is low and
the draft is small.

Nextly, the moment of the sectional area about midship is also

jnles(x)da: =0, (5.7)

which means that the position of the center of buoyancy can not be removable.
However, the water plane area is given as

Au(d)= S e, A= j Xw)de | 5.8)
and its moment about midship as

Sl oz, 2)dr= I%LjilxX(x)dx . (6.9
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The latter does not always vanish, that is, the position of the center of floatation can
be removable.

Now, keeping these properties in mind, let us see examples.

For our purpose, consider here the funections

Xo()=£4(1-8), .
Xi(x)=1-—4£%+38¢*, (6.10)
Xo(x)=1-108%415¢4—655,

where
§=£:é, for 2>b, and E::_cz;g’ for < —a,
1-b 1—a

a and b are some positive constants smaller than unit.
Moreover, let T,(¢) be the function of which derivatives are composed of jthree segments

and have the next values

T:(0)=T,(1)=0, T{0)=5,
T§0.2)=1 and TI(0.4)=T{1)=-1, (5.11)
and also

T,(0)=C1-0),

Exampe 1) Put 5=0.5 and let us deform the quarter fore body using X, and T at
Froude number 0.212. We may deform a ship partly as far as the function as aywhole

S le
win |n|#
—N - =
- p N (o]

AN \\\{ *

b4

e 1%

cme-8b
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preserves the conditions (5.2) or (5.4).

The ship form showed in Fig. 2 by the full lines is of an oil tanker with the block
coefficient 0.80%, and the object is to deform this bulbous bow to an ordinary. Here, we
replace the section form at F.P. to the chain line form which is similar to that in the area
and the form and also represented by T:(), merely because the full line is too complex to
be represented by a simple formula, and we may not loose its essential character by this
substitution.

Now, caleulate 7(x, z) by (5.1), and multiply an appropriate constant and add to the
off-sets of the full lines as the way in which the area bounded by the chain line at F.P.
vanishes, then we have a new body plan represented by the dotted lines which should have
the same wave resistance as the full lines form in the range of our approximate theory.

This has an ordinary bow, as we expect, and that extremery U-jshape frames and some-
what of Youkevitch form.

In a similar way as this procedure, we may deform a bulbous bow to an ordinary, and
inversely we may draw a bulbous bow from the ordinary bow form as far as its area is
not so much larger.

Example 2) Put ¢=b=0.5, and let us deform another oil tanker form® shown by the
full lines in Fig. 8, using Xi, T: for the fore part and X,, T: for the after part at Froude
number 0.184, as the way in which the breadth is broadend about 102.

The dotted lines give the deformed body plan as the same way as the above, and it

S.NOI321
Cp=.80

L =n
34 = 246
Ly =18.08

NN

r
£
P

e ————

o e s o e
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Fig. 4.

has a slight bulbous bow and the breadth broadend by about 102 but keeping the midship
sectional area. This midship section with knuckles is choosed merely for simplicity of the
computations, and so, of course, we may choose more practical fare curve at our disposal.

Example 3) Lastly, put a=b=0.5 and use X, T for the both fore and after body
of the same ship as the above at the same speed.

Then, we have dotted frame lines in Fig. 4, which are all inclined to the vertical and
have the maximum beam broadend about 20% at the load water line.

In the last two examples, the deviation of the sectional area curve to the older amounts
less than about 1% to the midship sectional area, so that we may appreciate the sound
foundation of the so-called sectional area curve hypothesis in these theory.

Lastly, we must notice that these deformations are depend on the speed and the greater
the speed the greater becomes the deformation, but it is not so serious defect as we con-
ceive, because we have another foundation for this idea in high speed as we saw in para-
graph 3.

In thus way, the displacement and the center of buoyancy are preserved in the first
deformation principle, but they must be both free in the second principle. Accordingly, the
problem of the second principle is to minimize the wave resistance variation for this re-
moved volume, so that it is the same one as of the optimum ship form essentially.

6. Optimum doublet distribution Let us remember the properties of the optimum
doublet distributions.

By the results of the author’s paper®, the optimum doublet distribution which is distri-
buted draftwise uniformly and tends to infinite depth, is given nearly by Mathieu function
of the lowest order and moreover the larger the order of the function the more the wave
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resistance increases rapidly, and that this character would not change so much if the draft
is not deep but rather very shallow.

Namely, this character of the optimum distribution states directly the second deforma-
tion principle.

Other writers® write also that the difference of two optimum distribution suffices also
a minimum condition, so that we may construct easily any other optimum one by simple
interpolation or extrapolation.

Hence, the method of deformation used in practice which depends merely on the idea
of the fairness of curve or the experiences would find a powerfull orientation from these
theory, and that it should be noticed that its theory is the same as the one of the parent
form which would be also an optimum.

Now, define the doublet distributions as follows,

H(x)=¢()/sint, x=—cost, 1=0,1,2,3,4. 6.1)
()= Z aPeet,q), q=9*/4, } '
where
afl=a%, asR =0,
a§1)=0 a’%z)-l—l"“a2n+1 ’
a&i’ bzn ’ a2n+1=0 (62)
(3)—a’2n+rbzn ] a2n+1—"0
0
oft=af, =~z

the coefficients a¥, b¥ and 7 are defined and given in the former paper®, in which a%,..; are

given here in the table.

For the practical purposes, it is preferable to represent by simple trigonometrical series,

Table

g Fr. Cu,q af af a3 af
1 0.7071 5.4095 0.61656 0.63268 |  0.00053 —
2 0.5000 | 14.670 0.61952 0.16586 1 0.00595 0.00006
V10 0.3976 | 10.849 0.64548 0.10145 0.01083 0.00032
4 0.3536 5.4129 0.74218 0.04071 0.00835 0.00041
V24 0.3195 2.0412 0.88398 0.01451 0.00436 0.00034
6 0.2887 0.50936 1.06089 0.00589 0.00131 0.00018
V50 0.2659 0.11541 1.22267 0.00379 0.00030 0.00007
8 0.2500 0.029499 | 1.35534 0.00310 0.00008 0.00003
V80 0.2364 0.0069759 1.48492 0.00266 0.00003 0.00001
10 0.2236 0.0013192  1.62408 0.00229 0.00002 | 0.00000
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then we may rewrite (6.1) as follows,

e:()=>1a% cos mb

m

(6.3)

aW=S1aPAP,
n

where A{™ is the coefficient of cos mf in trigonometrical expansion of Mathieu function of
n-th order.

Thence, it is a matter of simple computation to obtain these distributions, and they are
shown in figures. Let us see them.

The case i=0) H, shown in Fig. 5 are optimum at each speed, when the area of these
curve, that is approximately the water plane area, is given. Its coefficient of area is given
as 6=y = Fr. in usual speed, namely the lower the smaller this optimum value becomes, or
in other words, the finer the smaller the wave resistance in low speed.

—Ho

Rcwqmwhwnxr
0

e
4 5

- Lo -a9 ~ag - o ~0.6 - as - a4 -o3 -0z -0l

Fig. 5.

The case i=1) In general, the optimum distribution should be symmetrical about
midship, but if we hope to obtain the distribution not symmetrical, it is optimum to add
this anti-symmetrical distribution H; shown in Fig. 6.

For example, add this to H, so as to vanish at A.P., then we have H* shown in Fig.
12. These curves have fine aft shape except in high speed, and may be efficient for the
frictional resistance, but the wave resistance increases nearly twice of the former.
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The case i=2) Since H, are too fine to the practical application in low speed, it will
be necessary to shift the displacement to the fore and aft from the middle part.

The distributions H, shown in Fig. 7 give the mean for this purpose with the minimum
sacrifice of the wave resistance.

The case i=3) H; shown in Fig. 8 to 11 are computed so as to have a given area
coefficient by the above method. Here, we see in these figures that some of them take
negative value in some portion.

Although the distribution having negative value has no practical application, yet we
may also find that such cases are all when the given area coefficient is smaller than the
optimum one at the very speed, so that it may be no serious defect. Namely, if we can
choose larger ¢ with smaller resistance, why we will choose smaller ¢ with larger resistance?

The case i=4) Add H, to H; so as to vanish at A.P., then we have H,, but it is
found that the distribution thus obtained has almost always negative value but only in the
case when the given § equals nearly to the optimum. Accordingly, we do not shown them
at all, but Hg already described in Fig. 12.

Now, let us see Fig. 14 and 15, in which we see G. Weinblum’s results of similar compu-
tation® compared with our results,

In his computations, the draft is assumed one twentieth of the length, but both distri-
butions are very similar except when his curve has g distinguished swan neck, that is the
symptom that taking fuller form the wave resistance may be smaller.

Nextly, we show Taylor’s prismatic curves in Fig. 8 to 10 compared with H;. These
all curves show the similarity between both curves especially in medium fullness coefficient,
in such cases we find a remarkable correspondence in spite of our assumptions unreasonable
to compare.

Fig. 16.
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Lastly, it is interesting here to remember that the distributions defined in (4.1) are
also similar to the optimum ones in very low speed as we see in Fig. 13, and also the dis-
tributions defined in the following and shown in Fig. 16, which are similar to the optimum

but not corresponding speed, where we should remember that these ones have vanishing
transverse wave at the given speed®.

1 17 1 14
(e, g):ao[M(x)—!-—-—gz M (x):, +a2[N(x)+~gz N (x)] , (6.4)
where

M#x)=01—-2** and N(x)=22(1—a2?2, (6.5)
and a, and a; are determined so as to 7(0, g)=1/0.86.
Thus, we may have a clear concept of the optimum distribution and the second de-

formation principle, and that may conclude that such properties correspond to the experi-
mental results characteristically in spite of our assumptions.

7. Conclusions We may summary the conclusions as follows.

1) We may say that the principles of Taylor’s method of the series model experiment
will be founded on the means to deform a ship shape so as to keep its wave resistance
invariant or least variation.

2) The first principle to keep the wave resistance invariant, of which Taylor says that
the resistance is determined nearly by the midship sectional area, may be verified by the
theorem which gives wave free distribution except the shape in the extremities, but this
detailed shape affects also to the resistance as Taylor says, so that we may have more deep
understanding into the wave resistance including the last factor.

3) The second principle to keep the wave resistance least variation may be deduced
from the solution of the minimum problem as a matter of course, so that it will be the
same problem as the optimum ship form.

The theory of the optimum doublet distribution may give a simple method to deform
the ship shape in such a way, and at the same time to obtain the optimum form, but its
results should be understand characteristically because of its approximation with regard to
the correspondence between the ship form and the doublet distribution.

Thus, the theory of the wave resistance seems very usefull when we are combining it
to the method of the experiment, and we may expect any future progress in this field.

Concluding this short essay, the author must thank with his heart to Prof. Inui, Maruo
and Yamasaki for their kind persuations and discussions.
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