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WAVE-FREE DISTRIBUTIONS AND THEIR APPLICATIONS -

1. Introduction

, The idea of wave free or waveless distributioﬁs is a very old
one, and we can find it in Lord Kelvin's work in the early history of
the water wave research.\l

Since then, Professors Havelock, Ursell and Maruo have used
its idea in their works explicitly or implicitly.(gi5:u)

On the other hand, Professor Inui has proposed theoretically
and experimentally the waveless ship a few years ago.

About this time, the author also took up this problem in
general and found someof its general properties.

(7)

Here, he will show some of the results and applications.

(6)

2. Two Dimensional Pressure Distributions

Consider, at first, two dimensional water motions due to a
fixed pressure distribution on the surface of a uniform stream with
unit velocity and great depth. ’

Teke the origin at the center of the distribution on the i
undisturbed surface of the stream, with the x-axis horizontally in up-
stream direction and the y-axis vertically upwards.

Then, the wave-making resistance of this distribution is
given by the formula,

R = pg [F(g)|]? (2.1)

with 1
F(p) = { H(x) exp.(-ipx) dx , (2.2)

where p means the water density, g the gravity constant in this
unit system, |Fl the absolute value of F and H(x) the water head
of the pressure.
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Hence, the necessary and sufficient condition for vanishing
the wave resistance is clearly

F(p) = © for p=g, (2.3)
that is, F(p) should have a zero value at D= g.
It is very easy to seek such function, but here we consider

it in a different way. Let us introduce an auxiliary function by the
next differential equation

(a2/ax? + g2) o(x) = mH(x) . (2.14)

This is a well—known equation, and the function ¢ is determined uniquely
except two boundary conditions when H(x) is given, so that we may use ¢
instead of H. :

Now, putting (2.4) into (2.2) ang integrating by parts, we have

F(p) = [(d/ax + ip) o] exp.(—ipx)fiz_l
2 o, .t .
+ (g - p°) [ o(x) exp. (-ipx) dx, (2.5)
50 that we may have
Flg) = Le/tx+ 1) o) exp(tm)|” . (2.6)
Thence, if ;
o(#1) = (d/ax) o (+1) = o, (2.7)

F(g) vanishes and the wave resistance vanishes by (2.1).

Thus, to find a wave-free distribution we .simply need to find
a function o with the boundary conditions (2.7). Then, the pressure
is given by (2.4) and the surface elevation

1 1 (x!
n(x) = g%(x) + (g/x) lf (d/di Eoi, ) dx' . (2.8)

It is noteworthy that this surface elevation is symmetric when
o 1is symmetric. For example, let us consider

olx) = (1/6°)(1 - ¥)2 (2.9)
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Then, we have

H(x) = (1-=x)2+4(3x2 - 1)/g2 , (2.10)
-n(x) = (l—x2)2 + [8(2/3—x2) + hx(l-x2)log(l~x/l+~x)]/ﬂg 5
(2.11)
1 H
[EG)ax = 1615, - n(x)ax = 16/15 + 8/(5xg) (2.12)
-1 : -1

We see these curves in Figure 1.

In low speed, we may notice the next approximation except
near both ends.

Hx) £ -n(x) = go(x) . L (2.13)

(6)

3. Three Dimensional Case I

Consider the three dimensional flow and take the origin at
midship on the undisturbed stream, the x-axis horizontally 1n upstream
direction and the z-axis vertically upwards.

The wave-resistance of the Michell-Havelock type ship is

given as
gy T2 2 2 5
R = (pg'/2) | |F(gsec®e, 0)| sec o ao, (3.1)
e}
with 0 1
‘ F(k,0) = [ [ H(x,z) exp.(kz-ik x cos6)dxdz, (3.2)
-t -1

where H(x,z) means the breadth of the ship.

‘First; we will show a type of wave-free distribution, when
H has a form . '

H(x,z) = T(z)H(x) . - (3.3)
Then, the function in (3.2) reduces to

F(k,0) = I(k)f(k cose) , (3.4%)

ko N
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where o :

I(k) = { T(z) exp(kz) dz, (3-5)
and 1

£(p) = { H(x) exp(-ipx) dx, ' (3.6)
Fow, if . £f(») = 0, for v = gseec & > g, (3.7)

then we clearly have-a=type of wave-free distribution. -
This condition (3.7) is fulfilled if H(x) 1is represented as

g
H(x) = [ £(p) exp(ipx) dp, (3.8)
-8
and so the range of distributicn tends to infinity and generally it takes
negative value in some portions

For example, let us put
f(-g cos@) = cos n2/(g sing) (3.9)

then we have n
H(x) = 2n (-1)" J (ex) , (3.10)

that is, they are repfesented by Bessel functions.
For another example, let us put

f(-g cose) = (2~f%/g)[?(v+l)/F(v+l/2)] sinv*lG, v>0
(3.11)

then, we have
H(x) = A(x) = T(ve) 3, (ex)Aex/2)" , (3.12)
These curves are shown in Figure 2 and we see that these,
especially for small v,  tend rapidly to zero by departing'the origin;
so that we may obtain the distribution with small wave-resistance by
cutting out both ends.

(6,7)

b, Three Dimensional Problem II

If the distribution :is confined 1o some. finite area, . then .
we may treat it the same way as in paragraph 2.
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Introduce an auxiliary function by the next differential
equation.

2,02
[3/dz - (1/g) 9 /3x ] olx,z) = H(x,z) . (k.1)
Then, putting this into (5.2) and integrating by parts, we have
2 * 2 | °
F(g sec“6,0) = | [o(x,2) exp(gz sec®o - igx seco)] .
-1 =

O .
- [(o + ig secd do/3x) exp(gz sec®o
-t
1
- igx seco)] | dz .
x=-1 (k.2)
Hence, if we have

o(x,0) = o(x,-£) = o(+1,z) = do/dx(+1,2) = 0, (k.3)

then F vanishes and we have a veve-free digstribution. However, inte-
grating (4.1) and putting (4.3), we have
0 1

[ [ H(x,2) dxdz = o, (1.h)
-t -1

namely, the total displacement of this distribution vanishes.

Thisyds a different result from the above obtained, and
there is no more interest with this for the object only to obtain the
wave-free ship, but this distribution suggests a possibility to deform
a ship shape in a certain arbitrary degree without change of the wave-
resistance,

Namely, even if we add to or subtract from the given distri-
bution this wave free one multiplied by an arbitrary constant,; the
wave-resistance is kept unchanged as easily seen.

We will call +this method the invariant deformation. Consider-

ing in this way, (4.4) is an important property of such deformation,
and that we have easily

fo fle(x,z) dxdz = 0 _, . (h.5)
-t -1

which says that the center of buoyancy does not also change by such
deformations.

dx
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: o(x,z) = X(x)r(e), ¢ = (z+t) /¢ (k.6
and put
by o
XQ(X) = g (l‘é) »
X(x) = 1,3 5¢% (4.7)
X,(x) = 1-1067 1 5,k 6e”

Where ¢ . (x-b)/(l—b) Tor 1> x4y and ¢ - (-a-x)/(l—a) for
-l < x "% A ang g are arbitrapy, constants, ans let T (6) be
the function Of which derivative is Composeq o three Segmentg and

Ti(0) = 5, Ti(0.2) = 4 and T/(o.h) - T3(1) = 1 (+.8)
and
)=ty (4.8a)
Example 1.
At the Speed pp, O.212, put
X(x) = Xo(x) rop I>x>yp 0.5,
= 0 for p >~ o -1 (k.9)
") < ey

From these functions, Compute H(x,z) by (b.1) and subtract
it frop the Off-setg of the ship showeg by fuli lines ip Figure 3,
Which 15 of apn 0il tanker, Then, +pe bulbeysg bovr M2y become g Conven-
tional one whioch is’ shown by dotteq lines, Heire ye Teplace the Section
form g+t F.P. by the chaip line whi.p is Te€Ppresenteq by Ty(¢), merely
becayge the ryu13 line ig too Complex tqo Tepresent by a Simple formula,

Exampile 2.

At the Spbeed Fp, 0.184 apg of another oil‘tanker Shovn by
Tull lineg in Figure b, put
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X(x) = X (x) for 1>x>5b=0.5,
= 1 for b>x> -a = -0.5,
(4.10)
= X5(x) for -a>x> -1,
T(g) = Tl(C) »

and proceed as the above, we have dotted lines of which breadth is
broadened about 10%.

Example 3.

For the same speed and the same-ship as in Example 2, put

Ax) = Xg(x) for 1>x>b=0.5,
= 1 for b>x>.a = ~0.5,
(k.11)
Xz(x) for -a >x>.1 |
and T(¢) = Tg(g).

Then, as we see in Figure 5 by dotted lines, we may have the
ship shape with inclined side shell.

In the latter two examples, the sectional area does not change
50 much that we may understand the well-known practice which says that
the residual resistance of ships does not change so much in such cases.
Nemely, this method may propose a theoretical foundation to the problem
of deforming the ship shape without sacrifice of the resistance so that-
we may easily find a suitable solution to the demand of the ship designer.

5. Transverse Wave-Free Distribution<7)

The method used in baragraph 2 is also applicable to making
the wave element vanish in three dimensional case.

For example, put © = 0 and k = g 1in (3.2), that is, consider
the transverse wave only and the distribution of the type as (3.5),
then -

o] 1 )
F(g,0) =-{ T(z Jexp(gz )az -_{ H(X)em(jigx)dx- (5.1)

’
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The integral in x is the same form as in (2.2), so that
we may have a wave-free distribution by introducing the function o
defined by (2.4) and having the boundary values (2.7). We have seen
an example of such distribution on Figure 1, and this may be a very
simple method to obtain a ship form with small wave-resistance,

Let us see one more exgmple. Put
B(x) = aglilx) + (1/&2M0 ()] + ay((x) + (/20 ()], (5.2)

with

2,2 2 :
M(x) = (1-x°) and  N(x) = x°(1-x2)2 (5.3)
where a and a, are determined so as to H(0) = 1/0.6.

Then, we have curves in Figure 6 compared with the distribu-~
tions of the minimum wave-resistance which are drawn by dotted lines.
These curves show the similarity between both groups, .so that we may
suppose the wave-resistance of the present one's compafatively small.

Lastly, it is noteworthy that we may have also a transverse
wave-free distribution by introducing the next function, considering

in (5'1):

-+

[

(d/dz + g) p (z) = T(z).,
with ~ (5.14)

. n(0) n(-t) o .

i
il

6. Conclusion
We may summarize the conclusions as follows:

i) The two dimensional wave-free distributions are obtained and
applied to obtain ship water lines with small wave-resistance.’

ii) The three dimensional ones distributed over an infinitely long
range are obtained and may be useful to obtain such water lines as the
above.

iii) The three dimensional ones over a finite area are obtained too,
but have no displacement and longitudinal moment.
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However, they are useful in the sense that we may deform a
ship shape without change of the vave-making resistance.

Lastly, the author wishes to thank Professors Inui, Jinnaka
and Maruo for their kind encouragement and discussicns and especially
to Professor Yamazaki for pointing out large errors in his Former
panuscript and corrected in the present paper.
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