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Abstract

The author introduces the functions which play important roles in the theory
of the wave-making resistance of ships, converts their double integral to a
simple one, obtains various integral representations and analyzes their properties
especially in the relations of the well-known simple funections.

Then finally, he gives the list of the available tables of his or similar functions.

1. Introduction; Definition and_Differentiation

It is difficult but necessary to compute the fundamental funection in the theory of
the wave-making resistance of ships for the development of this theory.

The author has tried to analyze this function and finds its double integral to be
.convertible to a simple one, making use of the velocity potential of T.H. Havelock!®,
but the preceding works?®9® were limited to the case of two variables and t (see the
-definition below).

The functions are defined as follows®:

0sa, 5, )= Tia (=i Su S“’ exp. [—kt -+ ik(x cos u-+y sin %)] cost g diedu ,  (L1)

pato AT Yoz)o k cos® u—1+pi cos u
0.0z, y, )= lim =" S S" exp. [—ki+ k(@ cos uty Snul \ ia gy gy, (19)
potro 4w )z o keos?u—l1—picosu’
Puls, v, t>=—;—[onm<w, ¥y ©—0.9(z, , D] , (1.3)
Qulet, ¥, t>=%[onw(x, ¥y 0.9, 9, B)] , (1.4)

-where #, ¥ and t are assumed real positive and 7 integer greater than —2.

ATl functions are real and they have usually oscillatory parts but O.* is monotonic
-for the positive «.

Trom the definition (1.3), we can easily find that
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/2 .
Peu(2, v, t)=(—1)”§ e—tse™ gin (2 sec u) cos (¥ sec? u sin ) cos?® udu
0

(1.5)
Poni(w, 9, t)=(—1)”+1r/2e-* sec’s oog (2 sec u) cos (¥ sec?u sin u) cos?»+ ydu
0
These are the dircect generalizations of Havelock’s P, function!2!®,
For the negative x, we can easily find also that
On(—2, 9, D)=(—)"0u®(x, ¥, 1) ,
Pu(—w, y, O)=(—1""'Pu(z, ¥, 1) , } (1.6)
Qﬂ(_my Y, t)=(_1)nQﬂ'(x, Y, t) .
and then
On(—a, y, £)=(—1)"[0x"(x, ¥, )—2Pu(%, ¥, )] . .

Accordingly, we don’t consider the function 0.® in the following, because it is the same:
one as O." when the sign of 2 is reversed.
For the negative y, we have also

-P‘"'(x: _y’-‘t):P‘ﬂ'(m’ Y, t) ’
Qﬂ(w: —Y, t)an(w, Y, t) .

Now, the velocity potential of the unit source in the uniform flow of the unit:
velocity flowing from the positive « direction down to the negative at the point (2', %', 2')

under the water surface where the z-axis is taken positive vertically upwards, is written.
by T. H. Havelock!® as follows.

0Nz, —y, 1)=0."(, ¥, 1) ,
} 1.8)

1 1
V@—oP+y—yP+e—2)F Ve—oP—y—y ) +E+2)
_l__g_("‘ S” exp. [k(z+2)+ik(x—2") cos +ik(y—y’) sin 6]

7 )_,r 0 I cos? 0—g-+pi cos 0
where g means the gravity constant in this unit system.
This is written by making use of the definition (1.1) as

Sz, y,z; 2", y', 2")=

dkdo ,

N 1 1
e R AR R DV vy s sy X e MY/ (o e ey o e
+490%g9(x—2"), 9(y—vy"), —g(z+2)], (1.9)

Hence, the most fundamental functions are O%) and its derivatives.

In this respect, the definition (1.1) is not very convenient but we follow it merely
because the author has used it to the present.

Differentiating the definition formula partially, we have
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0p) (0w
'Q'{ }:{ 1}-!-%-1 ) 'QPn':Pn—i,

0% Q, e 0w
@ Qs (1.10)
0 (0] _[0Oa 9
'y +qu-—2 ’ —_Pﬂ« -Pﬂ—2 ’
Qn Qu-s ot
where
qea(2, Y, t)—ﬁ——LS re"“ cos (kx cos u) cos (by sin ) cos®** u dlkdu
—r oo (L.11)
Qonss(, Y, O)= ——LS S e~ sin (oo cos u) cos (ky sin w) cos®+3 o dkdu ,
—T JO
and we learn from this definition that
9, 0,
az ™ g vt 1.12)
) ) o '
Qn+tat qn + mawqﬂ + yayq‘"v‘—o ’
and especially by integration
q-(%, Y, t)* 2ot pP=ttty? , ri=wt+y?+1?,
922, Y, t)=— 21 ”
L (1.13)
q-s(x, ¥, )= S ,
T 2r(r+t)
_ oAt
qo(, ¥, 1) (e tF

Here we are to notice that the restriction for the order » may be rejected by the

introduction of the relations (1.10) and (1.12).
Lastly, we can verify the next differential relations.

Ne)
i
(_@f___@_) gn =’@"q'n ’
0x: 0t On 0z (L15)
2
(56{;5 —a%)Pn—O .

And then, combining two equations, we have
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62 62 ' _—a— On“') _ Q
(ay2+ atz+at>{Q,,_ }— o’ (L16)
8, 8 L 0\p _
<ay2+5t?+ at)P”—O ’
or
ot , 8 , #\[0") s  8\8
<8x4+59;;+@2){ Qn _<—f9w2+8t)6qu’ (L17)

04 2 o _
(8964 - ox? + oy? )P”—O )

2. Integral Representation I.

Let us consider deforming the integral (1.1) in the simplest case n=—1.
Considering the integration with respect to % in (1.1), we can write also it_as

o

eik:c cos u e—-ika; cosu ]

P rn/2 .
0w, y, t =LS cos % du S g—kt+iky sin u[ i '
R A7) ns2 kcost u—1-4picosu Jkeostu—1-+picosu

0

If we change the variable k¥ to m as m=Zkecosu and then u to v as secu=coshwv,

this becomes

0%z, v, t)=lgm d'vre-‘m cosh(v-ian[ ot g~ ime ]

—1 47)—w o m-+pi—coshv m—pi—cosh v ’

N where p=17/t*+4* and a=tan"'(y/t).
B Now 'let us consider the integration

! o > with respect to v in the complex wv-plane
T - (see Fig. 1) and deform the path of in-
?ZE tegration A to the line B for the above
2 0 A first term and to B’ for the second term.

- o) ' — Then, this integral on B and B’ goes to
X 2 B! 1 (= o0 gimlp sinh u—z)

A 4 47:?35_«. ug_mm—l—i sin h(u+1a)—pi ’

and then integrate this with respect to m
in the complex m-plane.
This is a well known integral and vanishes exeept 0<u#<B, and equals

B
—%S g—(@—psinbu) sinh (utiadgy  where B=sinh~*(x/p) .
o .

Pig. 1. v-plane

Other parts of the integral are residues at the poles lying between the line A and
B and between A and B'.
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Calculating these residues and changing the variable slightly, we have finally

lg exp. [{o sinh (u—ia)—x} sinh w] du , 2.1

8@, v, )=
Ly +L

where L; and L: are the paths of integration shown as in Fig.J2.

A

(o, %i) / (°°9 g’i)
2

(B,ix)

o =tan™ (y/t)
L (‘9’=-'_s:i.nh"1 (x/NEF %)
L

(@,~ i)

(Qu= Zi)
o

Fig. 2. wu-plane

In the same way, we have generally

0, g, t)=<:l)’l'—lg
2 Ly+Iy
The equivalent formula for the case n=2 and y=0 was obtained by R. Guilloton®
who introduced it from Mitchell’s integral, so that we may see the identity of his one
with Havelock’s!,
For the case n<0, the integrand diverges near the origin, so that an artificial
technique must be used.
Let us consider the case n=0 for example; we can write its integral as:

exp. [{o sinh (u—i)—x}sinh «] sinh *~y du, for n=1, (2.2)

eimm

00(z;, g, t)=—

Sec d’v S”e_mt cosh » cosh (my Sinh 'v)[
47 0

— COSh 2 m—+pi—coshv

e-—-ima: d
- m
m—pi—cosh v ] !
but

—1—Sw —S-Md'us °ae""‘* cosh # aog (my sinh v)[the same as the aboveldm=0,
drn)_coshv }o

as easily from the symmetric character.
Hence, adding the latter integral to the former and integrating in the same way as
the above, we have:
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O (2, ¥, t)=——-;—§£ . exp. [0 sinh (4—ia)—= sinh u](l—c—%%@du , (2.3)
182

and moreover

0% (z,.v, i)=—1— exp. [the same as the above](—l——cmd (2.4
2 Ji+1, nh? %

02, y, t)=—%g exp. [the same as the above](l_COSh u—si-l;}lﬁgshusmh u)du (2.5)
Ly+Ig

All these formulas contain imaginary parts but only their real parts are to be

taken.
Now, since we have already the integral representation of P, as (1.5), subtracting it
from the above formula, we have Q. by the definition (1.3) and (1.4) as follows:

Q-an(, ¥, )= (——1)”‘1S et sin’ ugogh (y sin » cos w) cos (% sin u) sin®*~*u du
1 (B+io ) . ) )
-I——S exp [0 sinh (u—ia)—a sinh 4] sinh**~* % du, for n=1
0

9 (2.6)
Q-2n—1(, ¥, Oy=(— 1)"5 e—tsin’ gogh (y sin w_cos ) sin (® sin u) sin® u du

B
“‘—:],_:‘S mexp. [the same as the above] sinh* % du, for n=0, /
0

and

e ——-cos u)du

/2 .
Qolz, v, t)=—S e~tsin’ 4 gogh (y sin u cos ) cos (% sin u)
0

1 (B+ie

+ES exp. [{¢ sinh (u—ia)—w} sinh ) Qﬂ}l@d
0

sinh %

-+ S”e‘t cosh? u oo (1 cosh u) cos (¥ cosh u sinh ») tanh u du, - - - 2.7
0

The last one is equivalent to the next formula which is obtained by the integration
of (2.6) making use of the relation (1.10).

'r-i-t)

Qo(%, ¥, B)=Qu(0, ¥, t)— —-log( =

/2
—I—S et sin’ cosh (¥ sin % cos u)[1—cos (zsin u)]—fi"—l'—
0 sin Y%

1 (B—ia . . . U
—-—S [L—exp. [{0 sinh (u—ia)—au} sinh u]] = ,
2 Jo sinh %

2.8)

8. Integral Representation II.

The preceding analysis enables us to compute their values numerically, but it is felt
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that their integrands converge very slowly in the range for small ¢ and y, especially in
the formula (1.5) for the P. function.

For such a range, the following analysis will be convenient for numerical works.

For convenience’ sake, let us consider the function P_; and other functions will be
deduced by the differentiation and integration.

At first, we have from (1.5) after the substitution of the variable in its integral,

o0

P_s(z, v, t)=%exp. (——%t + %p)& exp. [ix cosh u—p cosh? ( u——ig—>du , 8.1)

2

—0c0

where its real part is to be taken.
Since we have the integral

—p cosh® u-—ig'— _—__——1.—_—: B —ﬁ—. ( —..g‘)]
e—peost’ (u—i%) 21/‘npg_wexp.[ P cosh { % Ty dv ,

we can rewrite it as
e 2
¢"2'2 [* ) b . . Y
— ~¥\q ) hu— &
VT S_mexp< 4p> 'vg_wexp [zw cosh u—1v cosh(u g )]du ,
If we introduce here the new variables

as shown in Fig. 3, that is,

o . . a
Recos ¢p=x—v cos—z- , Rsin¢=wvsin o

(24
or R2=g2+v*—2%v cos E ,

then we may write

% cosh u—v cosh( u——i%>=R cosh (w+1¢).

Thence, shifting the path of wu-integration in parallel by ¢ and carrying out the
integration which gives the Bessel function of the second species, we have finally

P, v, t)=—-z—-—‘{/7% e—'%jf_%r exp. (-%) Y(R)dv , 3.2)

o~ 00

This is suitable for numerical computations when p is small.
When ¥ vanishes, this becomes

Py, 0, t)=— ﬁ_[mexp. (—0*/48) Yo(lo—ol)do , 3.3)

which was given by E. T. Goodwin!®, and we see that the right hand side satisfies the
differential equation (1:15), that is, of the heat conduction.
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Moreover, taking care of this point, we have generally
—_1 f= o -
Pz, y, t)= 5 l/7¥S_mexp.( V¥/4L) Pu(x—v, ¥, 0)dv, 8.4)

From the stand point that these function can be represented in the form of the
solution of the partial differential egation, we can apply this method to the equations
(1.14) and (1.16).

In the former case, Laplace’s equation, there are many formulas but we will not
consider them here.

In the latter case, we can change it to the next equation

0 9% 1 P Dox 0
- L&, Y, *j=0, .
(3 + o+ JPota, 9, 7] (35)

This is analogous to the equation of the diffraction of the wave, but its wave number
is imaginary, so that it will be treated in the same wayV.

4. Expansion of P, Function

Let us consider the function P_; once more in the form (3.1), which equals also

Py, v, t)=%e—t? S: e=T7 sk @101 cos (¢ cosh ) | @.1)

Remembering the expansion 2329

cos (% cosh u)= i (—1)"Endan(z) cosh 2nu) ,

»=0

where & means 1 for =0, 2 for n=1, and the definition

1 L
(g
2 0

we can integrate (4.1) term by term as follows,
Pucs(®, 9, t):—;—e—tlz S (—1)n8nKn<%p)Jzn(w) cos na, 4.2)
n=0

This series is convergent but its convergence is very slow .for large value of the
argument (#*/4p), and so for such range the next asymptotic expansion may be suitable.

Namely, we broceed as the above expanding exp. [——;—p cosh (2u—'£w)] in the Bessel

function with the imaginary argument, and can obtain the expansion,

P_i(z,y, t)=—%e‘t/ 2 f‘, &;L;(%p) Yen(x) cos ne . (4.3)

n=0
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In general, we can not have such an elegant expression as this, but we can expand
it in the Taylor series by the definition (1.10) as follows,

P'n(xi y: t)= i mm P”-—'I"'(O: y’ t) ’ (404)
m=0 |

Pul(@, 4, )= 3 2 Prsn(@, 9, 0) , (4.5)
m-—0 m!

The former is convergent but the latter is divergent and an asymptotic expansion,
and the functions in the right hand sides are expressible by known functions in the
next three cases.

i) Pa(z, 0, 0) is the same one as defined by T. H. Havelock!®, that is,

Pu(a, 0, 0)=——§r e

oo

r Yo(x)dazr+, for n=0,
= (4.6)

P_u(z, 0, 0)=—=-

d n—1
9 (——) Yo(x), for m=1,7

dx
i) Pu(0, y, t) is zero for even n because it is odd in « by its definition, namely,
P20, 9, t)=0, (4.7)

When # is odd, the simplest case is given by (4.2) putting in it « to zero, that is,
— 1 —1/2 1
P_1(0, vy, t)—;e /2 Ko -2—p ) (4.8)

and moreover by the definition

Poons(0, 9, t):—é—(i‘—t)” [e“/zKo(—;-p)] , for n=0, (4.9)

& t .
Puns(0, 7, t)=§§ S e‘*/"‘Ko(é—p)dt”, for n=0, (4.10)

iii) When y vanishes too, the above relations become simpler and we can obtain the
next recurrence formula by partial integration of the definition formula.

(n +%)P2n+1(o, 0, £)=(t—1)Pan-s(0, 0, 1)+t Pans(0, 0, £) , (4.11)

In another way, we have from (4.8) and (4.9), especially,
P_y(0, 0, t)=—;—e“t/2Ko<%t) ,

4.12)
P_s(0, 0, )= -———i—e“/z[Ko<%t>+K1<it)] :

2
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‘Then we can get all functions by arithmetie.
Finally, it is easy to see that

P:n11(0, 0, O):(__]_)nﬂm

Tt ®18)

‘5- O"(l)(x’ O, 0) and On(l)(oi y’ t)

The functions 0."(x, ¥, t) or @u(x, ¥, t) can not have such simple series expansions
as in the preceding case, because they have a part expressed by indefinite integral as we
see in § 2.

Then let us consider here their degenerate cases only.

Firstly, getting to zero v and ¢ in (2.1), we have

09w, 0, o>=—;—§°°e~x s =2 )~ Yool 5.1)
0

‘where Ho means Struve’s function?®2®,
By the integration and differentiation, we have directly

00z, 0, 0)=—ﬂ:[ﬂo(x)~ Yo(w)—-n%]dw, 5.2)
0z, 0, o>=2lm+%—§[m<w>— Vi)l , (5.3)

and the recurrence formula

70,2, 0, 0)+(n—1)0® (x, 0, 0)

n—2

=x[0 (%, 0, 0)+OD (=, 0, 0)+guv-1(x, 0, 0)+qr-s(z, 0, 0)], (5.4)
where ¢. is easily found to be

_ (=1 I'(n+3)
207 7 I'(n+1)’

Q2n($, 07 O)=O’ qzn-—l(w: 07 0)
1 (5.5)
q-2(x, 0, 0)=_§a—o and g-.(, 0, 0)=c for n=3.

These functions correspond to Havelock’s Q. function which are defined ag!®2®

Qo<m)=%§“ [Hy(@)— Yo(@)lde,
L (5.6)
Qo(w)=So Qus(@)de .

After fairly long calculation in the formulas (2.3) to (2.5), we can obtain the
following relations.
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Qo(x)=log 2rx)+20,%(z, 0, 0),

Q:(x)=2 log (2rx)+1—x+20,%(x, 0, 0) , 6.7

Q:() =(w2%1) log (er)—l—%—{— X ——i—x"’—l—ZOz‘“(x, 0,0,

Here ¥ means Euler’s constant 1.78108:-- .

One of the conveniences of using our O.® funection is that each of it has a simple
asymptotic nature and tends to zero when x tends to infinity.

Secondly, when x vanishes, we have by its symmetrical nature
0292(0: Y, t)—_—'an(O, Y, t) ’ }

5.8
0,40, ¥, £)=Pan1(0, #, ) . (5.8)

Since the latter case is already discussed, we will consider the former only.
By the integral (2.2), we may write it as

Q-2(0, ¥, £)= 02)0, v, t)=——1—e“/ ZS exp. [—1—,0 cosh (2u—ia:)] sinh u du ,
2 Lyt I 2 X

Here Li and L. are the paths shown in

Fig. 2 but here $=0. 1
Now, let us deform the paths L; and La J( >
Lz as shown in Fig. 4. X/2
Then, the integrations along the lines T II
parallel to the real axis cancel out each T ¥ (01 )
other and after some calculations we have ¢
ii( 0 -
Q—z(os Y, t) -
=08 (J—a)e"‘/zr—;ﬁe“%f’m cos v dv 4
2 Jo * 2 Lt y
G S T 2
Here

Fig. 4. wu-plane

_ e (Ve g o (8\ & _(—=2)" 29)28
Eoe)= ﬁgo 0 du—l’(2>n§) Tt (5.10)220

In the same way but after long calculations, we have also

pti
0

(0, 9, t>=—§log [2r(p+8)] -l—STEo(z)dz . (5.11)

Finally, if y vanishes too, we have directly from the above
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1 z
Qu(0, 0, £)=—— log (47 +SE iz,
o0, 0, 8)=——log (4rt) +| E@) } 12
Q-2(0, 0, t)=Eu(t) ,
and by partial integration of the definition formula
1Qen0, 0, t)-}—(n—%)an_z(O, 0, %)
=1[Q21-2(0, 0, £)+Q2n—4(0, 0, £)+g20—2(0, 0, £)-+g20—s(0, 0, )], (56.18)
where
(0, 0, )=0 for =3, g_s(0, 0, )= 21
(6.14)

_1
q.(0, 0, t)—4t , ete.

6. Neighbourhood of the Origin

Our functions have three arguments so that we may lose their general character
even near the origin.

Then, let us consider the character near the origin for a moment.

Firstly, considering the function 0., the simplest case n=-—2, we have from (5.3)
and (5.9)

0%, 0, 0) = ljL—’Z—log (re/2)+---, (6.1)
020, ¥, t) .—=> cos® %[ 1—'(‘0_;,’@4" ] ) (6.2

Namely, it may be finite near the origin because it does along three axises as we
see and this is confirmed in fact by R. Guilloton’s -table® (See § 9 also).

If so, it is smaller and negligible compared with g_s=—1/2r near the origin so that
we may conclude from (4.8) and the definition that

0%, 3, )= 010, ¥, t>+g"[o_z<w, ¥, t)Faa(e, ¥, )1ds

s+ Tog Wire) —Hog ("1)= — 10 [ 1], (63)

and then, differentiating it,

¢ tw ¢
) =9 ou _s(®, ¥, t = — , .
0%, y, )= ; 0%@, 9, )—q-s(w, y, O)= S r i) 2ret 200 (6.4

Secondly, let us consider P_; of (4.2) near the origin.
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Since we have?®
1 (n——l) < ) _(w/2) n
its series equals nearly
-__1_ < o — n(n.__. 1)__' Z "
P_i(z, y, t)= 9 log (4/7‘P)+ﬂ2=21( 1) ! (p) COS N
22 3
=% log (4/70) — gz; e . 6.5)
o0

Here its real part is to be taken.
In this formula, if (#%/40) is small, the integral in the right hand side is also small,
but this is not the general case.

Namely, when ¢ and p are small but (x?/4p) is very large, this integral increases
logarithmically as

S Eo@)da= —log U2,
so that we may obtain

P_y(z, y, ) p‘fﬂ log (2/7%) . (6.6)
%3/4p>1

This is coincident with the predominant term of (4.8) which may be valid for such
range.
Lastly, we can obtain in the same way. as the above

=_{_B__ __.’X/'_ 10 ﬁ i )
Pz, v, 1= log (rolt) e Eo( P ). 6.7)

where the real part only is to be taken.

7. Asymptotic Property of 0™

Although the funection O.® is complicated in nature as we have seen, but it is
fairly smaller compared with the P, function, and that it decreases monotonically and
has an asymptotic expansion when its arguments tend towards infinity.

Now, let us consider that »=1/#*+92-+¢* is very much larger than the unity.

Returning to the integral (1.1) and expanding its dominator of the integrand as

1

N S 2 k2 cog?
pSry—] A+FEkcos®ut+k?costu+t, -++),

Let us integrate term by term and use the definition (1.11); then we have
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0
Onm(w’ Y, t)‘:—[q%(wr Y, t)+'a_tqn+2(m: Y, t)+ P (In+4(93, Y, t)+ ‘ '.'] ’ (7'1)
For example, making use of (1.13) we see that

1) -=.____._"'t+pz —_ . —n ST a2
0" (z, ¥, )= r(r+t) ’ P—“'l/tz"l‘?lz ’ (7.2)

09z, 9, t)=—= w[8p®(r+)+26w%] ,
O, y, )= e 21 (r L) + (7.3)

—_— 2

08(a, 4, t)= gt ELEDIL (7.4)

ord(rtE

which are coincident with the asymptotic characters in the degenerate cases of §5.
The first term of the right hand side of (7.4) is a well-known mirror image term
and was given by R. Guilloton from the observation of his table® (see §9 also).

8. Asymptotic Property of P_;

In contrast to 0,% function, P, function takes a comparatively larger value even at
the point far from the origin, and it shows a well-known Kelvin’s wave pattern which
has been studied by many authors'#2027,

Here we consider the asymptotic expansion of our simplest function P_: following
their methods. '

Let us rewrite (8.1) as follows,

P, ¥, t)=—12—S°° gisrody, | @.1)
that is,
Ju)=cosh u——zy; sinh .‘qu,—}—%cE cosh?u , (8.2)

and apply the saddle point method?®.
To obtain the saddle point from (8.2), the equation

J'(w)=sinh u—l;— cosh 2u+% sinh 2u=0, (8.3)

must be solved, but it is easily found that this goes to the equation of the fourth
degreé and its solution is very complicated.
Hence, keeping out of confusion we will take up much simpler cases.

A) The case y=0
The equations (8.2) and (8.3) become
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J(u)=cosh u—l—iwt— cosh?u , (8.4)
#'(u)=sinh u+2—;‘5- sinh 2u=0 , 8.5)

so that the saddle point to be used is the origin.
Now, putting

P=fW)—fO=2f O+ L FOO+ -+, 86

where f"(0)=1+2wi ’ f“’(0)=1+‘8£—t y e 8.7
we may write (8.1) as

P_i(x, 0, t)=gi=f©® S: egier? (%)dp . (8.8)

Then, if we expand as

du_ /T2 &

apV F@
namely, ——§1/ ;;(g)/ 2dp, (8.9)
the integration of (8.8) can be carried out term by term and we have
PinnomSRGtem 5 L S0 g
where ao=1, az=—-—2[fj(.+),((g))? ) (8.11)

as we get from (8.6) and (8.9).

B) The case t=0
The equation (8.2) and (8.3) go to

S(u)=cosh u— él; sinh 2u , (8.12)
f'(w)=sinh u— éyo? cosh 2u , (8.13)
Then, the saddle points are two, that is,

s1nh[ ]—f; &=cosh™" (1/‘”—%) , 8.14)

so that there may be three cases if « is smaller, larger than or nearly equal to /8y .
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Fig. ba. wu-plane

this point as follows,

M. BESSHO

i) If x is smaller than 1/ 8y &'in (8.14)
is purely imaginary and the saddle points
are as shown in Fig. ba and the point u.
may be used after some consideration.

Putting £€=1&" and

cosh u2=1%1/§+_e:ﬁ'"= f/‘%’s ,
namely, p=1"5+4cos2¢&’,
sin 2&’
2--cos 28"’

tan 20=
(8.15)

we may write f(u) and its derivatives at

__pe® , )
f(%z)——4ﬁ(3-l—z tan &),
(3 — ?:p_ 4 _is (N — 3 —iE"
I (uz) vl tan&'e™® ,  F'"'(u2) _‘/76 , . (8.16)
YR i 7 —2ig
S @ (ug)= 78 s8’( Te~2e) |
Now, let us take the path of integration as shown in Fig. 5a and integrate as
1 . 2 dv
) — i ptef {u) P 8.
Posa, u, O=ge=r |~ et (Pan, 817)
h 8= F)—Flun)= T £ Ctn)+- o f )+
where 102 =Jf(u)—f(us =51 Uz 31 Uz (8.18)
V=U—U2
Expanding as
AN_ /"2 Sy V)2t
dZ))_ f”(’bbz)n =5 2y Y . 27‘57; p""*‘l ’ (8.19)

that is especially

LSOl _f 9 (us)

ao=1 y 2=

‘we have finally

12[f" ()l A ()l

;_L i f (%o) +45/2 T [ @a .. . ]
P_y(z, y, 0)= 9 giarstuy "/yp S E _1+2x | (8.20)
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ii) When #>1"8%y, ¢is real and the
saddle points lie on the real axis as
shown in Fig. 5b.

This is a well known case in which
there are the diverging and transverse
wave-systems inner the Kelvin angle?®,

In this case, f(u) and its derivatives
are all real and they are

é_g SIS PR N

Fig. 5b. wu-plane

Jus)= —% < 1+—e i“)S 2e*s/(Z cosh &),

» -/ 1
S (u)==F 1—]-;3iZE tanh €, - (3.21)

f"<uj)=—~v_%eis L f)=a/ oo (g7 —Te=9)/(2 cosh ),

where =1 or 2 and the double sign is taken as the upper one for j=1 and the lower

for j=2.

In a usual way, let us integrate along the paths shown in Fig. 5b, namely,

Pz, ¥, 0)= X lei"f ‘“ﬁg g~or? —dldfp,
j—-122 —oo dp
where i =)~ f) =T ) )+ (8.22)
V=U—U; ,
expanding as
. 2 =
o . 8.23
ot g L@ i) (629
’ 120" ()P ALf ()l
‘then we have
P s ’0 = i%f () i/ 4 )
@y, 0% 3 errepnts o B (14 ), (8.26)

‘iii) When % is nearly equal to 1/ 8y, the preceding two formulas give wrong

-approximation.
In this case, the most reasonable formula owes to F. Ursell?” and we will follow

‘his analysis.
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Let us consider & as real and put (8.12) hs

Fan=—2"+oue)+e),
namely , (8.25)

uer=| it [ o)=Ly s

A then the saddle points in v-plane are
(1
= + . . 1
1 = v (8.26)
pi4
1 lo u, U, Now, if we miay expand as
A\ AN n du co o
T = - 2___ 1 \n - 2__ '3 ,
1 /9/“\% o= 2 =0 3 buwi—p)
z (8.27)
a( and take the path of integration as shown

in Fig. 5¢, we can integrate as follows,
Fig. 5c. wu-plane

P_y(, v, 0)=%r exp. [iw(—%i—l— v -I—u)]i?’idv

dv
zviz) o 4 .
=P Bt A ], (8.28)

where

[ 3
Ai(z)=lg cos (p_+ zp)d:p ,
T Jo 3
that is the Airy’s integral®®,
The coefficients ac and b are found to be

e e e AR .

Finally, it is easily seen that the formula (8.28) is applicable for the imaginary &,

that is, outer region of Kelvin angle in which case g of (8.25) is negative and the:
argument of Airy’s integral changes to positive??.

9. On the Numerical Tables

There are many tables of such functions prepared for the object to compute the:
wave-making resistance or the wave profile and pattern.

The followings are their list available for us in our notation.
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)

)
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I a)

b)
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d)

e)

III) &)
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Pu(z, 0,0) for n=0(1)9 and x=0(0.4)4.4,5(1)40
where the number in the parenthese means the interval of the parameter.
with 4 significant figures by T. Jinnaka!®.

-:—Po(w, 0,0) and %[Pl(m, 0, 0)—1],

for #=0(0.1)1.0(0.2)10.0(0.4)50.0 with 4 figs., by T. Inui'®.

Pz, 0, 0) for n=—T1A)1, £=000.5)2(1)16 with 7 figs., by M. Bessho®.

Pu(0, 0, t) for n=—"7(2)5, t=0~10, with 6 figs. and U.(f)=(—1)*"P—_2.-4(0, 0, £) for
n=0(1)31, {=0~6 with 10 figs. by M. Bessho®.

%rQo(w) andzian(w) , for £=0(0.1)1.0(0.2)10.0(0.4)50 with 4 figs. by T. Inui®.

0.9, 0, 0) for n=—2,—1,0, w=0(0.5)2()16 and g 0%z, 0, 0)dz and
Q

((%;)n 0% (x, 0, 0) for n=1(1)4, 2=0(0.5)2(1)16 with 7 figs. by M. Bessho®.

Q:4(0, 0, t) for 2n=—6(2)4, t=0(0.1)1.0(0.2)10 with 6 figs.

Eq(t) ,St Eyt)dt for t=0(0.1)1(1)10 with 10 figs. and E.(t)=(—1)"Q_2.—2(0, 0, £) for
0
n=001)9, t=0~3.2 with 8 figs. by M. Bessho®.

P_s(x, 0,t) for x=0~60, 1/t =0~1.0 with 4 figs. by National Physical
Laboratory, Ma/16/15022%,

P_y(x, 0, t) and OY (=, 0, ¢) for #=0~19.5, t=0~1.0, with 4 figs. by T. Takahei®.
0%(x, 0, t) and the wave elevation by a point doublet along its path, with 4
figs. by Tokyo University®’.

P iz, 0,t) and O%(x, 0,%) for x=0~27, t=0~5.2 with 8 figs. by T. Iwata®®.
These four tables are prepared for the computation of the wave-making resist-
ance and the wave profile.

Pulz, 0,t) for n=—T(1)2, x=0~16, t=0~6 and O0.“(x,0,%) for n=-—3(1)—1,
x=0~16, {=0~6 /are prepared for the computation of the submerged body
problem by M. Bessho®.

2V e e
A _9_ [glwl ay —g(a+Z)]
nz(m’ Y, a/—l"Z) —7Z'V2P—2 Ve ’ VZ ’ VZ ’

setting g/V*=04, for gx/V?*=0~20, gy/V?*=0~4 and —g(a+2)/V?*=0~0.8 with 3
figs. by R. Guilloton®®.
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b) iZz(q, 6)—Zw(g, 6) =%log 2rg)+00"(z, ¥, 0) , for ¢g=1/w*Fy?=0 ~20, 6=tan"*(y/x)
=(0~180° given almost by figures by T. Jinnaka?®®.

10. Conclusion

The preceding analysis shows that
1. the function considered is represented by single integral instead of double integral so

that the computation may become simpler.
2. the various limits of the function are considered and related to the known functions.

as far as possible so that the general feature may be elucidated.

We have the similar work by R. Guilloton in which he showed heuristically and
numerically its property and the extraordinary way of computing the various quantities
of the velocity field around the ship with the aid of his tables, but, mathematically
speaking, his method has some difficulties which we hesitate to proceed with.

Our final outcome must be the same as his and this work might be the second step

in the attack on this problem.
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