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THE MINIMUM PROBLEM OF THE
WAVE RESISTANCE OF THE SURFACE

PRESSURE DISTRIBUTION

Masatoshi Bessho
Defense Academy
Yokosuka, Japan

INTRODUCTION

The minimum problem of the wave resistance has no solution in thin ship
theory, and this means that singularity distributions exist which have no wave
resistance. On the other hand, the wave-free distribution belonging to the usual
functional class has no displacement, but wave-free distributions with a finite
displacement exist in the theory of the slender ship, although the wave-resistance
integral has no finite value in such case (1,2). This apparent contradiction is
caused by the confusion of the functional class of the distribution, but the intro-
duction of the function of the wider class or the higher order singularity makes
the theory more fruitful (3).

This paper explains such a situation of the problem with respect to the sur-
face pressure distribution (1,4,5). The theory is very similar to the thin and
slender ship theory.

By the way, this theory is the case in which the ship surface and the pres-

sure are given in the framework of linearized theory, so that it may be interest-
ing to compare it with the so-called second-order theory.

PRESSURE DISTRIBUTION

Consider a uniform stream with unit velocity, and Cartesian coordinates,
taking the origin at the water surface, the x axis as positive toward the upstream
side, and the z axis as positive upward. If a pressure p(x,y) acts over the

surface S at the water surface, some wave motion occurs. Let #(x,y.z) be the
velocity potential of this motion; then it must satisfy the conditions (6)

1
Tp(xy) A s By, 0) - eZ(xy) (1)
X

p(x,y) = 0 outside of S, (2)
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El E;
-a—)-(—Z(x,y) = "a"'; ¢(X1y,0) ’ (3)

and
2

'?'_ ¢(X’y’ 0) = "'g 3—¢(X,y, O) outside of S, (4)
ox? dz

where o is the water density, g is the gravity constant, and Z(x,y) is the water
surface elevation.

Then, it has the well-known (6) representation

1 1 a ! ! 13 1
H(x,y,z) = v J]p(x v - S(x,y,z; x',y',0)dx'dy" , (5)
s
where (7)
S=- lim %— i ‘fm exp[kz+ik(x—);') cos 8 +.ik(y—y') sin 6] dedd
w+0 -7 Yo k cos* 8 - g+ iu cos 8
(1) ' '
= 4g0_," le(x-x"), gly-y"), -z], (6)
and where
9?2 3
Zore 2 os=2g XD 2 iwnyty (yoyy2s o2, (7)
ox oz oz

Then the condition on the ship surface S becomes

12,12 (8)
ox 9z PE 3x g 3x?
or
32
ox' 2

1 1 T Vg
206,3) = = g POOY) + g [P ¥7) 7 S axdy ©)
s

The solution of this integral equation has been examined by Maruo for small
values (7,8).

For large g values, it is well known that the second term of the right-hand
side of Eq. (9) is small and

Z(x,y) ~ ~p(x,y)/pg (10)

except near the periphery of S.
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Minimum Wave Resistance of Surface Pressure Distribution

If the auxiliary function m(x,y) is defined by the partial differential equation

34 32 2
p(x,y) = ‘:a—;; + g? <5;—5+ —%;)jj m(x,y) , (11)

then it will be determined uniquely except for some arbitrary boundary condi-
tions, say,

m(:l,y) = _;— m(+1,y) = 0,  m(x,tb) = 0, (12)
X
where S is assumed as a rectangle with length 2 and breadth 2b.

Putting Eqs. (11) and (12) into Eq. (5), and integrating partially, yields (10)

R A R A
P(x,y,2) = f(x,y,2) + m J 1 ( m - S> - dx’
- y'=-

oy’ !
b 3 2 32 !
+ 1 ( 0 m-—?—-S~ G m o S> dy’ , (13)
4mpg " '3 ox’ :x'? x'? =1
where (10)
1 2 32 ) . o {1 § gt
f<X1Y7 Z) = -2—77-’[—)- (:g;—) <—£(T— g -g-) ffm(x Y ) &‘T‘(T)dx dy . (14)
S

Since the first term has no trailing wave, this formula shows that the po-
tential consists of two parts; one is, say, the wave-free potential, and the other
is the part having the trailing wave, which is a sum of singularity distributions
along its periphery.

If m(x,y) satisfies also the conditions

32 . _ 93 . _ 2 iy = 15
5 mLy) = —pm(ly) = 0, Sem(xrb) = 0, (15)

along with Eq. (12), then the potential is wave-free.

In this case, integrating Eq. (11) and imposing the conditions of Eqgs. (12)
and (15), it is found that the total pressure is zero:

ffp(x,y) dxdy = 0. (16)
s

This is similar to the conclusion in thin ship theory (10).
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For a simple example, the pressure distribution deduced from
2 4
m(x,y) = (b?-y?)" (1-x?%) 17

is shown in Fig. 1.

VERTICAL SCALE |S ARBITRARY

*0 — 8-05b=2

—— 3 5.b o2

Fig. 1 - Pressure distribution
of a wave-free potential

By the way, there are wave-free distributions with finite displacement
(payload) in the two-dimensional problem, but their displacement is very small
compared with their static buoyancy for high speed. This means that there is a
large negative lift at high speed with wave-free distributions (11).

In another way, the potential f(x,y,z) of Eq. (14) is always wave-free for an
arbitrary function m(x,y) without the conditions of Eqs (12) and (15), because it
satisfies the surface condition of Eq. (4), but higher order singularities than the
doublet must be introduced.

Thus, an arbitrary large number of pressure distributions exist with the
same displacement and wave resistance as the following simple cases:

1. The longitudinal line distribution along the two segments |y| =b, x| ¢ 1,
which may be called the twin hull ship type.

2. The slender ship as the limiting case b= 0 of the above.

A
o

3. The transversal line distribution along one or two segments |y| <
which may be called the planing surface type.
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For example, the pressure distribution deduced from
m(x,y) = (b2-y2)(1-x%)" (18)
belongs to case 1, and the pressure distribution deduced from
m(x,y) = (b2-yH)(1-x)* (1+x)° (19)
belongs to case 2. Figures 2 and 3 show these examples.
When g is very small, the first term of Eq. (11) is dominant, but as g be-
comes larger and b smaller, the third term becomes dominant, where Eq. (10)

is to be remembered.

The twin hull ship type for large g (Fig. 2) is especially interesting, for it
may be considered as a model of a broad flat stern of a displacement ship (12).

Finally, the wave resistance R is (6)

/2

R = “égw_;' |F(g sec?6, 8)]” secS 0do, (20)
-1/ 2
where
F(k,8) = JJ p(x,y) expl-ik(x cos & + y sin 0)] dxdy, (21)
s

or, interchanging the order of integration, the wave resistance can be written

2
R=E H p(x,y) G'(x,y) dxdy, (22)
S
where

G'(x,y) =% JP(X'sY') P lg(x-x'), g(y-y"), 0] dx'dy’, (23)
S

in which (13)

- 2n+1

Ponst cos (x sec ) cos 4
: 2n

Pon sin (x sec &) cos“" 8

}e—z sec29 do .

(24)

7/ 2
} (x,y,z):(—l)”—“ cos (y seczgsinﬁ){

0
This function G' may be called the influence function.

Putting Eq. (11) into Eq. (20), integrating partially, and making use of Egs.
(12) and (15), it is found that the wave-free distribution has no wave resistance.
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Fig. 2 - Pressure distribution
of the twin hull ship type

VERTICAL SCALE 1S ARBITRARY
—— 2=05, b=2
- 3e5 L b=S

//%‘I-ab\\

/ AY

Fig. 3 - Pressure distribution
of the planing surface type
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MINIMUM PROBLEM

When the total pressure is given, namely,

ﬂp@{,y) dxdy = A, (25)
S

if the influence function becomes constant over S, that is, if
G'(x,y) = C>0, (26)
then the wave resistance is minimum.

On the other hand, differentiating partially, G’ satisfies the differential
equation

ax* ox?  3y?

|:a4 + g2 <.§3_+ .?f..)jl G'(x,y)= 0, (27)

assuming the existence of the integral.

Accordingly, G' may be represented uniquely by some boundary conditions.
Hence, the integral equation given by Eq. (26) is regular in the domain, so that
it may have a unique solution.

Since the existence of its derivative is assumed, the integral equation ob-
tained by the differentiation of both sides of Eq. (26) may also have a unique so-
lution, and this solution must be identically zero, because the right-hand side is
Zero.

Hence, the present minimum problem has no definite solution and no mini-
mum value exists for the wave resistance (1,14). This fact may mean that its
least value will be zero, because it may be possible to reduce the total wave
amplitude as small as necessary, adding the longitudinal and transversal distri-
bution to each other appropriately. However, the minimum solution exists in
elementary cases such as thin ship theory.

Thus, the problem may be classified as follows:

1. Twin hull ship type distribution. When the speed is very high and the
breadth narrow, this case nearly equals the next. As seen from the preceding
section, it is also interesting at low speed, but usually it seems more useful to
consider it in combination with case 3 (12), which means case 4.

2. Slender ship. In this well-known case there exists a unique solution ex-
cept for arbitrary wave-free distributions which have no wave resistance but a
finite displacement (1,9).

3. Transversal line distribution. This is the case to be studied in the fol-
lowing section (1,4,5,7).
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4, Problem to reduce the wave resistance. This is also a practical prob-
lem, that is, how and how much the wave resistance can be reduced by the ade-
quate combination of the elementary distributions, keeping the practical restric-
tions of the actual ship.

There is another case which has a unique solution, that is, a symmetric dis-
tribution about the origin over a circular disc, but it is nearly equal to case 3
for large velocity (1).

TRANSVERSAL LINE DISTRIBUTION

Case 3 above will now be studied, namely, a transversal line distribution
(1,5,7-9). Suppose the wave-source doublet is along the segment |y| <1, of
which the total is given as Eq. (25). Introducing a normalized distribution H as

H(y) = 3 [pCry) ax, (28)

this is written as

1
J H(y) dy = 2. (29)
-1

The wave resistance (Eq. (22)) can be written as

* L2 [ A2 ! (30)
= R = R[[— )= 2 H(y) G(y) dy,
: <pr3> /(8pg> L (v) G(y) dy
where
g3 2 d?\ (31)
G(Y)=T<1"‘g‘2‘é;—2>0 ¥
and also
1 1
G*(y) = ;J H(y') P_,[0, g(y-y"), 0] dy’ (32)
-1
or
1 (! g
G'(y) = 5> | H') K, <~§~Iy-y'l> dy’ (33)
-1

where B is the breadth in the usual unit system and K, is a modified Bessel
function.

Equation (31) can be deduced from the following relations. Since the func-
tion P_, has an expansion (13)
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. €
P90 = ) B Han(3/2) Tn) (34)
n=0
and since
84
P_s(xvy’()) = 5’;}{ P_ 1<XinO) )
then
3 1 1 d?
P_s(0,y,0) = 1= Ko(y/2) = 75 Kaly/2) = 7 (1 -2 5?) Ko (y/2) - (85)

To solve the integral equation (33), assume the next expansion in Mathieu
functions (15)

H(y) = #(8)/sin &, y = cos @, (362)
P(8) = a,, ce, (6,-q), q= g?/16 . (36b)

Then, since there is the integral

—Z%T—J‘ K, <-§- cos 6 - cos 9’|> ce2n(6',—q) do' = A, ce, (8,-q), (37)
0
where
(2n) |2
N Fek,,(0,-9) (38)
2n "7 |ce, (0,q)| ce, (0,-q) ’
because of the representations
(2n)
1 (7 . -1 A Ceyn(u,q)
FL cos {2k cos O sinh u)ce, (f,-q)dd = coezn(O,qi ) (392)
o -1)" AL Pek, (z,-q)
- e Z,-q
%—J cos (2% cosh z sinh u)Ce, (u,q)du = Ze 70 q;n , (39b)
0 2n\
and the relation
] Fek, (0,-q)
Re [Fek, (-i6,-q)] = m ce,,(6,-9), (40)

783




Bessho

G* can be integrated as (1,15)

G* (cos 6) = Zi: MNon 8oy C€,,(0,-q) -
n=0

The minimum solution is a solution such that

G(y) = constant ,

but, putting this into Eq. (31) results in a differential equation, so that

G*(y) = constant

may be a special solution, but there is also a homogeneous solution:

G*(y) = C cosh (gy~2),
where C is an arbitrary constant, for which

G(y) = 0 and r*=0.
This solution will be called a wave-free solution (1).

Since there are expansions (15)

2
n=0

cosh (g cos 8/A/2) = 2{: -H" C,, ce, (6,-9),
n=0

where

2
2-1)" Ay Ce, (sinh!1,-q)

2n ce, (0,9) i

the general solution can be written in the form
H<y) = aHa(y) - be(y) ’ a—b =1 N
where

&0

Ho(y) = #,(8)/sin 6, ¢,(8) = Z a%, ce, (6,-q),

n=0
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Minimum Wave Resistance of Surface Pressure Distribution

Hy(y) = #p(8)/sin 6, ¢ (0) = Z by, ce, . (6.-q), (50)
n=0
(2n) ®
® 2A0 Z (2n) 2 51
Fon = AN 20 ! A= o AO />\2n ! ( )
and
2(-1)" C = R
b’;n:—g—_?_—_gﬂ, D:Z Cyn A(()2 )>\2n. (52)
7DA 2R =0
Then
G(y) = ag3/(27A) , r* = 2ag3/(7A) . (53)

Although this solution becomes infinite at both ends y = 1 in general, taking
as a the value

a = ¢b(0)/[¢b(0)‘¢a(0)] s (54)

this solution becomes zero there, in which case it will be called H_.

For the numerical computation at high speed, it is more convenient to ex-
pand in the series of trigonometric functions as follows:

[

$,(0) = Z: a, cos 2nd, Pp(0) = Z B,, cos 2n6 . (55)
n=0

n=0

Figures 4, 5, and 6 and Tables 1 and 2 show the results (4). When the ve-
locity is very large, that is, when g is very small, the functions become approx-
imately

N2 _ ¢’ (56a)
?,(6) N — [l I3 log (8/7g) cos 219] ,
2 3g?
bp(0) ~ = [1 + ——156- log (8/vg) cos 29] , (56b)
$(0) &+ sin? 6, (56¢)
and
Ho(y) = =v1-y7 (56d)

where v means Euler's constant. The wave resistance is, respectively (1,4)
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rf x (2g3/7) log (8/yg) for H (y). (57a)

=0 for Hy(y), (5'7b)
and

rh & 8g/m for H (¥) . (57c)

Thus, H, represents the elliptic loading of which resistance and minimum
character are found by Maruo. He explains that the wave resistance is similar
to the induced drag of a wing physically and theoretically (7).

In this respect, H, corresponds to the load distribution of a wing:

H(y) = IM1-y? . (58)

Since the induced velocity of this distribution is zero, there might be no in-
duced drag for such a wing; if such a flow could be realized (16). For the plan-
ing surface, however, there may be a possibility to realize such a flow by adding
floats at both ends (17).

On the other hand, the similarity of H, (Fig. 5) to the wave-free distribu-
tion (Fig. 1), especially at low speed, is also to be remarked.

Generally speaking, the situation with respect to the wave-free solution may
be similar to that of slender ship theory, in which case there also exist wave-
free distributions having a finite displacement, and they correspond to another
class of the distribution which has smaller resistance than the slender ship (2).

CONCLUSION

~ As explained above, there is a close similarity between the theory of the
thin ship and the pressure distribution. Thus, any pressure distribution is
composed of line wave sources and wave-free distributions which have no dis-
placement.

A typical elementary wave source is the twin hull ship type, that is, the
longitudinal line distribution of the pressure on two parallel lines. Another is
the planing surface type, that is, the transversal line distribution of the pressure.

Generally speaking, the minimum problem of the wave resistance has no
solution and the least wave resistance may be zero, because some elementary
wave sources could be summed up so as to cancel out their amplitude functions
with each other. However, there are special cases when the solutions exist.

In this paper, the transversal line distribution of the pressure is treated,
and it is found that there exists a unique minimum solution except for the wave-
free distribution with a finite displacement. This wave-free distribution corre-
sponds to the inverse elliptic load distribution of a wing and seems difficult to
realize practically but suggests that distributions of another class may exist
which have smaller wave resistance than the one considered here.
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Minimum Wave Resistance of Surface Pressure Distribution

Finally, the larger the velocity, the smaller the wave resistance of the

transversal line distribution; namely, this type is essentially preferable for very
high speed, but it may be also possible to apply this theory to, say, the design of
the destroyer stern.
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DISCUSSION

G. P. Weinblum
Institut fir Schiffbau dev Universitdt Hamburg
Hamburg, Germany

Science is subject to fashion as much as other human activities. Recently
the thin ship and surrogates have completely dominated the field, but in the
twenties (and earlier) the pressure system has been considered as being an
equally important hydrodynamic model (at least in principle) as the Michell
ship, especially suitable for picturing fast shallow-draft and planing vessels.
By Dr. Bessho's paper a sound equilibrium has been established. The present
speaker had emphasized the similarity of the Hogner and the Michell integral
(Zamm, 1930) and thus inspired Sir Thomas Havelock to derive the simple rela-
tion between source-sink distributions - and pressure systems p

9
4mpgo = ¢ 2
ox

with the usual notations (c = speed of advance) (Havelock, collected papers, p.
373). The line distribution established by Dr. Bessho for a rectangular pres-
sure domain follows from this equation.

Somewhat later (1935) von Karman has shown that the induced resistance of
a finite-span wing can be derived from Hogner's integral for vanishing gL/c? or
vanishing g in Bessho's formulation, thus anticipating Maruo's result in his
splendid papers on planing surfaces. His analysis of pressure systems and cor-
responding form of planing hulls should be developed. Auseful scheme had been-
developed by H. Wagner, who connected planing surface and wing phenomena.

790




Minimum Wave Resistance of Surface Pressure Distribution

Dr. Bessho has clarified the conditions of minimum resistance for pressure
systems in a similar far-reaching manner, as he and Krein have succeeded in
doing it for the Michell ship — now a classical problem which caused so much
_ discussion. Obviously, further work should be done on nonrectangular domains
of pressure distributions and on combinations of such domains. Further, his
remarks on ship forms and singularity (source-line) distributions open the field
for a much needed treatment of the resistance of moderately fast and high-speed
forms, including fast displacement ships with transom sterns.

I have two questions: Dr. Bessho's g equals my speed parameter
%o = 1/2F?, How is this g defined, and how is the condition obtained given by
Eq. (27)?

* * *

REPLY TO DISCUSSION

Masatoshi Bessho

I thank Prof. Weinblum for his kind remarks and will clarify his questions.
The definition of g in my paper is as follows: Suppose the uniform velocity V is
unity and take the unit length to be a half of the ship length L; then the gravity
constant g in this unit system is

*
S5 (L
g V2 2 b4

where g* is the gravity constant in the usual unit system, so that it equals Prof,
Weinblum's v. In the latter part, the breadth of the planing surface is taken as

twice unity, so that
_E(B
g = v\ 2 )"

Equation (11) is derived as follows: We can introduce a regular function =
such that

2

3 9 2
-};W(x,y,z) = —<a—x-2- + g §;> P(x,y,2)

having the surface value

1
7(x,y,~-0) = FP(x,y) .

On the other hand, if ¢ can be calculated from a regular function M by the
equation
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Bessho
32 9 ]
¢ = - <§;; g 5;) = M(x,y,2),

where M(x,y,z) = -M(x,y,z), then ¢ has no radiating wave. Hence, putting the
above into the first equation, we have

~

N 34
2 822> m(x,y)

4 ~2 2
_..a.._.- g2 < ° + ..—.a.._.) m(x,y> s
x4 3x?  oy?

where m(x,y) = M(x,y,-0). By the assumption, this is a wave-free pressure
distribution.
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