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Abstract

The author shows at first that the large second order effect of the free
water surface of the submerged cylinder depends mainly upon its height of
the entrained regular wave and that the range in which that effect becomes
serious will be confained almost in the cases in which there is no stationary
solution or there occurs a phenomenon like as hydraulic jump.

This effect depends upon the form, the submergence and the speed of the
eylinder naturally and he shows examples of this effect with respect to the
simple wave-free potential and concludes that there may exist no definite

general rule,

Lastly, he shows the pressure measurement of some two dimensional wave-
free cylinder models and obtains a fairly good correspondence with the line-
arized theory especially taking the second order term into consideration.

1. Introduction

The present difficulty of the wave-resistance theory is the so-called second order effect
problem except the frictional effect and it is natural to try to study in the two-dimensional
case, although the wave system is too simple to be analoguous to the three dimensional
ship wave. The problem is generally divided into two parts, the accuracy of the ship
surface and the water surface condition.

The former is studied by T. H. Havelork (ref. 1) for a circular eylinder firstly and
the latter by T. Nishiyama (ref. 2) and M. Bessho (ref. 3) firstly but more correct treat-
ment by E. O. Tuch (ref. 4), and it becomes clear by these works that the second order
effect of the water surface is more important than the one of the body surface for a
circular eylinder especially in low speed.

From this observation, E. O. Tuck looks with suspicion the validity of the linearized
theory.

However, there is also a thought, in the other hand, that the smaller the wave-
resistance, the smaller is the error of the first approximation and in fact a circular
eylinder entrains large wave. '
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Accordingly, it is felt that more things will be left to study.
In this stand point, this paper deals with some examples and characters of the wave-
free potential and physical view of the second order potential of a cireular cylinder.

2, A éubmerged cylinder

Consider the uniform water flow with the unit velocity,. take the origin at the water
surface, the x-axis as positive inversely to the flow direction and the y-axis vertically
upwards.

Let the complex perturbation velocity potential be

F@=p(z, y)+ipz, y),
@.1

r=zxt1y, %:——u-l—iv,

where % and v mean the component velocities.

The pressure p(z, y) is given by Bernoulli’s theorem,

L @&, y)=—gy— L
e 2

arfk. 1
1+ dzl +1, @.2)

where p means the water density and g the gravity constant.
If »(x) means the water surface elevation, it is given by the equation

’7(93)= _"gb(m: 7?). (2°3)

Now, the first order potential satisfies the water surface condition where the pres-
sure is constant, that is,

0.2, 0~ L oz, 0)=0, (2.4
and
ni(@)=~¢(z, 0). (2.5)
Then, the second order pressure excess at y=0 by this potential is
1 =_Lljdfi|* a 9
o PO 3| G| @0 s fowo-Lotwo), 26)

. Hence, introducing the correction potential fy(z) with this pressure at y=0 as
7]
g¢:(z, 0)— b £ 0+ po(®) o =0, 2.7
the surface elevation becomes to the second order

2@)=— by, 0)— iy, 0)+v§?;¢1(w, 0), 2.8)
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This is the ordinary procedure to obtain the second order potential.
In the far down stream, f, will have the wave, that is.

S#)——aeior+ie, (2.6)

E——o

where a is the amplitude of the wave.
then p, will become by (2.6) (ref. 4)
g2
(2o — ?“2’ (2.10)

In the other hand,

D.C. part of [ (@)= — iz, 0)+y P, 0)] (2.11)

Yo
that is, there is the mean elevation as in the theory of the finite amplitude regular
wave (ref. 7), and the second order pressure (2.10) balances to the mean surface elevation
(2.11), so_ that ultimately ¢ may balance (2.11) and the mean level may he kept un-
changed (ref, 8).

In the other way, there exists a mean flow with the wave transmission as well
known.

Its total volume is ga?/2 per unit time and equals (2.11). (ref. .

In faect, this is explained as follows.

The actual representation of f; becomes

M@=4hgﬁmwwmwﬂwmw, @.12)
OV ) oo
where
. o e_ikz
Slgz)= lim S —-—dk, (2.13)
w0 )o k—g—pi
and
d . _ 1
(Eé +zg)S (g2) =—— (2.14)

and, as seen from Fig. 2 of Tuck’s paper, it will be justified in the far down stream to
take the next approximation, assuming the pressure as a step function,

mwﬁwkwjgswzwmw (2.15)

that is,

fz*(z)—— [ log z+S(gz)] (2.16)

z=—co
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Thus, the excess flow by the mean level up is supplied by this sink at the origin,
or near the origin more correctly, this sink concells out the source at infinite down stream,
and causes the mean flow with the wave propagation.

Moreover, it is interesting to know that the wave-resistance R is

R=E0 0= (Ha), 2.17)
which is explained hydraulically such as that mean momentum flow with the regular
wave is p-ga®/2, but the one half of it balances the pressure rise by the level up to the
water surface in the rear and the other half to the external force.

Meanwhile, by Tuck’s calculation, it is clear that the contribution of f. to the second
order effect is the greatest, and this is understood from the form (2.15) and (2.16).

Accordingly, if there is no wave, then this term does not contribute so greatly,
because it has no logarithmic term as in (2.16).

Nextly, the wave has its maximum height, by Mithchell’s formula, when

afi=ga/2r <0071, (2.18)

where 1 means the regular wave length (ref. 6 and 7).
For a submerged cirular circular cylinder at the depth 4, since

1 . . .
FiR)= o — o —2igSlge—h)l, (2.19)
filx)—— —dmigeoh—ioe, (2.20)
a=4rge 9", (2.21)

and then (2.18) gets to
292 <0.071, (2.22)

or, putting (2.17) into (2.18) directly and taking its square,

R < 0.05

—_ s ! (223)
rg g

This is a very severe restriction, for example, the immersin for which the wave
does not become highest for all speed is

h>8.91 at g=2/h, (2.24)

This means moderately a deep immersion and the effect of the free surface is not
very large.

If the immersion iz shallower than (2.24), there is a range in which the wave-
amplitude exceeds the upper limit, that is, for example,



“Some Notes on the Theory of the Wave-Resistance in Two-Dimension” 447

0.285<Fr=VN/gh<180, for h=1
r=VIVg or } (2.25)

0494<Fr=Vh/ gh<118, for h=2

where V is the uniform velocity.

In this range, there exists no stationary potential flow and occurs a phenomena
similar as a hydraulic jump (ref. 8, 9 and 10).

Since a weak jump is a wave motion and a strong one is a state that there exists
no stationary wave, this is a close analogy (ref. 6).

The criterion (2.18) ean also be written in the usual unit system as

al(vt/2g)< 0.892, (2.26)

Namely, this will mean that the maximum surface depression can not also exceed
nearly the velocity head.

By the way, it is worthwhile to note that there exists an equi-pressure line for the
first order velocity potential. '

Let it describe y, it is given by pressure equation as

__ 0 N S o {00\ | (001 P
gy= amsol(w,y) 5 O ql—(aw)+(6y).

taking to the second-order term, it becomes

2

__90 _, 0 _L
gy= aﬂcgol(w,O) yaxaqu(w,O) 5 O

(2.27)

¥y=0

In the other hand, the surface elevation to the second order is represented by (2.8)
so that the difference between them may become

gly—n)= 5%: @a(2, 0), (2.28)

This is a simple relation and the same as in the three dimensional case.

Namely, the difference between the equi-pressure line in the first order potential
(2.27) and the free surface line in the theory accurate to the second order is given by
the x-component of the second-order velocity.

3. Wave-free potential

The water surface condition can also be written in the form:
Re[d—cif(zH 'igf(z)]=0 , for y=0, @.1)

Hence, if f(2) is represented as
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1@ =L m@)—igm), (3.2)

by a regular m{z) such that
Re[m(z)]=0 for y=0, (3.3)

then f(z) satisfies (3.1) and has no wave (ref. 11, 12).
For example, putting

—_?’._ eia e—n‘ar )
)= o + i) .

Sf(2) can be calculated as

_ eitx e—ia i”'_ eia et
1= i it e et o | 35

E_specially, for n=1 and a=0,

_ 1 1 11 1 1
He= v T T [(z+ih)’-+(z—ih)2]’ ©6)

and that for A=0,

1

. _ 1.1
J1l®)= P + Ep '

3.7)

In Fig. 1~4, the stream lines are sketched from rough calculations.

As seen from these figures, if ¢ is very large they represent cylinders closed,
although E. O. Tuck reports that a submerged doublet potential gives unclosed stream
lines.

Now, velocity potential with a doublet sigularity can be expanded as

f@=(a+ipe+ =, (3.8

near the origin, including the uniform flow potential, so that the equation of the stream
line may be

Brecos @ —i—( ar— %) sin 6= Const. (3.9)

To obtain a circular stream line it is necessary that 8 is zero, that is, the flow is
symmetric about the origin. (ref 4, 8)

Since the wave source potential can not be symmetric in uptream side and down tream
side, there will be no possibility to have a closed stream line in the usual meaning,
but this unclosendness character will diminish when the wave becomes smaller and, in
fact, there is a closed stream line for a wave-free potential in a limited range.
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Fig. 1. Stream line of wave-free potential Fig. 2. Stream line of wave-free potential

!
10 fa- z+iL+t3£_

=24

Fig. 3. Stream line of wave-free potential Fig, 4, Stream line of wave-free potential

Lastly, the wave-free potential has of course a wave train in the second order theory
and there may not exist an exact wave-free potential in deep water but this will be a

future problem.
Since the wave-free potentials (3.6) and (3.7) give nearly an accurate cylinder for
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very low speed in Figures, they can be served as the first approximation potentials of
the circular cylinder.

Then, the second order terms with respect to the water surface will be calculated
easily.

For the one example, consider (3.7) for large g, that is, a half immersed cylinder,

The second order potential is given by (2.12) where p:(x) by (2.6)

1, 4 1,4 :
D)/ p= o + g e + r (3.10)
Since
Slgx) —— 2rie—ioe, (38.11)
€ —1
The wave amplitude by (2.12) is
2 (= »

ta= ;S pox)e—seda, (3.12)

Putting (3.10) into (3.12) and leaving without integration the segment iwlsl,wthis is
a2:2r(l + —8%) cos grde——"— 2 sin g+, (3.13)
\@* gt g»l g
This is very small compared with (2.12), but, since the wave-resitance is
=P e P 1 9 “es 3.1
R 1o .2g( cos2g)+- -, (8.14)
it is always larger than the critical resistance (2.23) except narrow range near the hollow
point cos 2g=1,

For the other example, considering (3.6) for a submerged cylinder with large g,
p(x)} becomes

p(2)p= i A+ cos 40)+ E%.—E(Z cos 66+ 3 cos 20—1), (3.15)

where re?=x—1h.
Then, a; by (3.12) is evaluated by the contour integration and its largest term
becomes

dx
2 = B a—gk
——>g>>1 5 gte o, (3.16)

This is much larger than (2.21) in contrary with the above case but consistent with
Tueck’s and Salvesen’s results.

The wave-resistance will be
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Rz & (4 gea, (3.17)

As seen from these examples, the second order effect is very difierent in character
with between a submerged and floating body.

Moreover, since there are also cases in which p.(¢) has no integral as like as in the
next paragraph’s examples, it can not be treated in a straight manner.

Especially, for the floating body case, it is very complicated because the body surface
condition too will contribute so much (ref. 13) and at least there may be two cases
different in nature such that the intersection angle between the body and the water
gsurface is 90° or not.

4, Wave free pressure distribution (ref. 11, 14)

Let o¢(z) be a real function such that

a(x1)= dima(il)zo’ 4.1)
and take m(z) in (3.2) and (8.3) as
__a{ te=), ,
m(z)= e S—1Z—$’ dx’, (4.2)

then f(z) becmes by (3.2) and using (4.1)

_i ' da’ ; li '
fo=—| Bl aw) Lo | 43)
and the pressure by (2.7)
p@)zp@/p:_m[g_f + igf] _ ol éauw, 44

The surface elevation is calculated from (4.3) as

_ . 1( do(z)
Hix)= gr}(a:)—a(w)+xg§_1—~—-ﬁm_x, (4.5)
Consider a function which satisfies (4.1), namely,
_ 1[sin(n—1)¢ sin(n-+1)d S _ .
an(2)= 2%[ o1 P ] . n=2, x=--cos @ (4.6)
Then, by the integration and differentiation, (4.4) and (4.5) become
1 cosnf

P (x)=0n{0)+ ——— 4.7

g* sing’
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() — L
H(x)=0.(x) n cos nd,

Fig. 5 shows an example for n=2,

(4.8}

The pressure becomes infinite at both ends, but this is not favourable for the

experiment.

Hence, the offset of models are drawn as follows:

Hl
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Fig. 5. Wave-free pressure distribution Fig. 6. Pressure distr of. M23G4
Table 1. Model Particulars,

Model M23G4 M23G2 M23G1 M24G2 M24G1
Length (m) 0.56 0.40 0.30 0.40 0.30
Breadth (m) 1.18 1.20 1,19 1.20 1.20

Design Vel. (m/s) 0.783 0.990 1.212 0.990 1.212

Froude No. V/v'gL 0.354 ° 0.500 0.707 0.500 0.707
1/a 2.5 3 4 3 4

Pay Load (Kg) 11.57 6.26 2.63 6.26 2.65
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—y(@)y=2{H:(x)— Hs(x)}, (4.9)
which for g=a are called M23Ga.
— (&)= H(x)— Hx)}, (4.10)

which are called M24Ga.
Model dimensions are shown in the table and the experimental results in Fig, 6~10.

Here, the manometer head rise above the still water level is the difference of (4.4
and (4.5), that is,

dp

Manometer pressure= Ly gy = —
o am »=0

(4.11)
but the pressure in these figures is the sum of this and the statical head gy 80 as to be
convenient to compare with the linearized pressure.

The theoretical values are not bad, (ref. 15) if it takes acecount into consideration
that the model depth is greater than the velocity head and the linearization assumption
is hardly consistent.

Thus, the second order pressure must be considered.

From Bernoulli’s equation, the pressure is given as

L=t )+ ()]
p;v(w.y)m w5 z[am + av) | (4.12)
Accordingly, subtracting the first order pressure (4.4) from the above, the correction
term is

1 — ey O _AJ (0 Qﬁ)z]
pc( ) = Y 5w 5 o(z, 0) [(M) +(ay ’ (4.13)
or introducing the boundary condition,
1 N ._iiyz__l_a_@)”
5 )= —yo Sy~ ( dm) 5 (6‘::: : (4.14)

The corrected values are plotted with the doulble circle marks at some points.

They seem approach the experimental values qualitatively except the concave part
and M24-type models.

Of course, there may occur the boundary layer separation in the concave part and
also in fact M24-type models was observed that they were unstable in trimming.

At the design speed, the wave-train could hardly be observed.

Lastly, these wave-free cyliders have few pay-load, that is, their statical buoyancy
is very much larger than the pay-load.

As seen from the figures, the statical buoyancy pgr. equals nearly
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1
pgpa-;pgxg (Ho—Ha)de, (4.15)
-1

and the pay-load pgpq is

1
pgm:pgls (pr—pmida, {4.16)
-1
Hence, by the infegration, it is shown that

Valls= for M-23 Type

g
g+8/(3z)’

g 4.17)
Vd!Vaﬂ.m, for M-24 Type

Thus, the pay-load tends to zero with g.

5.

Conclusion

The second order effect problem of the wave-theory is very much complicated but

at least the following conclusions are deduced from the present considerations:

D

2)

3)

4

The second order effect with respect to the water surface depends upon the magnitude
of the wave for a fairly large portion.

The speed range in which the effect occurs at the largest grade will be contained in
the range when there exists no stationary wave and oceurs a hydraulic jump. This
means that the wave height has its maximum and accordingly the wave-resistance
does also.

In very low speed, the second order effect of the water surface is very large for a
submerged body but does not seem to be large for a floating body and that there
may be various cases.

The wave-free cylinder models representing pressure distributions were made and
measured the pressure. The results show a fairly good correspondence with the
linear theory, if the pressure are corrected by the higher order terms in Bernoulli’s
equation.

Finally, it seems very important how much and to which functional class the wave-

resistance which is a function of geometrical properties of the body belongs.
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