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Abstract

The author proposes a stand point to formulate the boundary value problem
of a floating ship as a limit of a submerged body in the theory of the wave-
making resistance, because there is an analytical difficulty on the cross curve
around the ship surface with the water surface in the former but not in the
latter, and he says that the solution of this problem may not be unique.

In this stand point, he tries to study the second order correction to the
ship surface condition.

He introduces the reverse flow potential to write down the integral equa-
tion to determine the ship surface condition in a symmetrical way, and also
does the diffraction potential to obtain the equivalent formula to Haskind-
Hanaoka's.

Lastly, he shows the asymptotic expansion of Neumann function at in-
finity making use of this diffraction potential.

1. Introduction

There are two boundary conditions in the theory of ship waves, that is, the water
surface and the ship surface condition, and we have satisfied with linearized condition
because we apply the linearized water surface condition in usual.

Meanwhile, the second order corretion, especially for the water surface condition, is
purely non-linear and very difficult to estimate it theoretically and also numerically, but
for the ship surface condition it is not non-linear mathematically but it is a problem of
linear integral equations for the boundary value problem of Laplace equation. '

Hence, there is only a numerical difficulty in the latter case. This paper deals with
the formulation of this problem.

In the other hand, there must be a parallelism between the theory of ship waves
of the uniform motion and the oscillating motion. For example, the diffraction potential
plays an important role in the osecillating motion.

How we can state its equivalent in the uniform motion problem? This is also the
aim of this paper.
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2. Floating Ship

Let us consider a water motion around a ship in a uniform flow which has a unit
velocity and is flowing down to the negative direction of the z-axis.

Here, take the origin on the mean water level and the z-axis vertically upwards.

Let ¢(x, y, z) be the velocity potential of the disturbed water motion except the uniform
flow, then it must satisfy the water surface condition

”® 8 9 B '
(— 95— ug;)sﬁ(x, 4 0) =0 (2.1)

where g means the gravity constant in this unit system and u Rayleigh’s frictional
coefficient which must be tend to zero after the operation, and the ship surface condition

0 ___ 0z
%sﬁ(m,y.z)— on P S. (2.2)

where n means the outward normal of the surface and S the ship surface.

This problem is very difficult to solve, but, in the other hand, the potential which
satisfies the water surface condition and has a unit source is well known, say the fund-
amental singularity, that is,

1 1 g . x [ ek(z+z’)+ik(m-m’)dkda
428(P, Q) =———— 2. 1 2.3
(P, &) ¥ 7 oz uiTog So k cost0—g+ picosd’ 23)

bt

where
P=(z,y,2), Q=" y' 2"), r=PQ, 7=PQ, Q=(«', y',—2").

and &®=xcos #+y sin §, &' =%’ cos #+¥' sin 4.
At infinity, it has next asympototic characters,

S(P, @)— ﬁ(—}; +%) for z>u, (2.4)
S(P, Q)—2S,(P, @) for z<a, (2.5)

where
Si(P, Q)= ﬁ Si/:/zeﬂ (e-tat)secl( gipsec?(G—7) _ g—igsecl@@-31) gac? fd M, (2.6)

Making use of this function, by Green’s theorem, it can be shown that
_ 0 _9s
sp=(| {s@Zsp 0-Lglas,

where F means the water surface out of the ship, by the way, F' means the water plane
area of the ship.
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The integral over F is deformed the one on the line C which is the ecross curve of
the ship surface S with the water surface F, making use of (2.1) it becomes

sr=|| {s@Zse -3slas,

1 0

+o | fpogse o-sielay, @

The second term of the right hand side does not appear in the case of the submeged

body, and is considered as a special difficulty with the floating ship.v2»®
Now, since the surface elevation is

&(, y)= —%%qu, ¥,0), 2.8)

this term may be interpreted as the correction term for the change of the wetted surface
of the ship from the mean one.»® In fact, that change can not be estimated before
solving this problem.,

There must be also some indeterminancy like as in the case of the surface glider
which is very much like the wing.

Thence, this term seems to show such indeterminancy, that is, the present boundary
value problem may be not sufficient with (2.2).

A ways to detour this difficulty is to
assume the ship as a limit of the sub-

merged one as showing in Figures.

Figure (a) is a real ship, (b) is a (@) chb)
doublet layer over the ship surface under
the mean level, (¢) is a source-sink layer
and (d) is a limiting submerged body with

WS w.S. F
a rigid water plane which tends to the == — ” m ’
mean water level, i
The boundary condition becomes re- ce) (d)
spectively FIGURES
06 a¢
% S+='-'5“,r; S_,?S |s+—@|s-=n for (b), (2.9)
_g4. O8] 08| _
¢IS—¢lS—! 6'nl8+_an S_—"‘"O'
for (c) (2.10)
and SS odS=0.
8
9¢__0x
= m on S and F, for (d) (2.11)
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where S; means S itself or the outer surface of the ship and S- the inner surface.
These problems may have unique solutions as a limit of the submerged body, but it
is not evident that these solutions are the same one.
However, it may be correct at least to say that the difference between them and a

correct solution, if it exists, has a representation as like as (2.7) and the boundary con-
dition

a¢
“L=0 S, \
o on (2.12)
Thus, if the analogy to the gliding surface may be permitted, the question which is
a compatible solution may be answered by inspecting whether the weigt and moment of

the ship will be balanced to the hydrodynamical buoynancy or the water flow around a
water line will be physically acceptable.

Namely, all of these problems are of the second order” and it is difficult in general
to treat it as a whole.

Fortunately for the usual displacement ship at a moderate speed, this weight unbal-

ance could be considered as small numerically and the water flow condition would not
raise a serious difficulties. '

Hence, the case (d) is taken up for the following treatment but the results obtained
will be applied for other cases.

Then, the potential can be represented as

¢(P>=S§S+F{¢<Q>%S<P, @ - ¥slas, @13) -

3. Boundary Value Problem

Let us consider the artificial water motion when the trailing wave direction is re-
versed and ¢* be its velocity potential, the reverse flow potential,® then it can be re-
presented as follows:

(2, 4, 2) = S SE”{ﬁﬁ*(Q)c%S*(P,Q)—%*S*}dSQ, 3.1

where S* means the unit source potentizl and its regular wave must be lie in the
upper stream, then it may be taken as

S*(P, @)=8Q, P), 8.2)

where S will be defined by (2.3), because it has the necessary conditions from (2.4) and
(2.5).
Clearly, the difference between them becomes to
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S(P, @)—S*(P, @)=25,(P, Q), (3.3)
or they can be written as

S (P, QN _ :

p =P QES(P.Q) 5.4

and S, is an even funection in (z-x’) and ,Ss an odd.
The boundary condition of ¢* is assumed to be

G0, 0
angﬁ = n®= " on S and F, (3.5)

Corresponding to (3.4), the next partition is possible.

g*}: 0.+, (3.6)

and their boundary conditions must be

. _o 6._ 02

on ' on on

on S and F, (3.7

where ¢, is an even function in # and ¢, is an odd when S is symmetric with respect
to the y-z plane, but it has not always necessary to have such symmetry.
The explicit expressions of ¢, and ¢, are as follows:

bo= S Swgacé%sc dS+S§S+F(¢, a%ss - o s,)ds, 3.8)
ol (ot ogsss o

Putting (8.7) into these formula, and tending the argument point on the surface S
and F, they compose the system of Fredholm’s integral equation of the second type.
Then it must have a unique solution.

In the other hand, the potentials have a regular wave system in the far down stream,
that is, from (2.5), (3.2) and (2.18), (3.1),

$(P) s 25 Sm(”sﬁ%& — %Ss)ds, (3.10)
PP — _2SL+F(¢*6%S‘ ~ anis,)ds, @.11)

or

HP) — —"’—-Sm {$o( P, ﬂ)ﬁ(ﬁ)—¢;(P,10)H(0)}Seczﬁdﬁ, (3.12)
2€0 2m1 ) _zpe
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i 215_ SolP: OH*(O)—$o(P, O)H *(0)} sec? 6dg, (8.13)
where
o P, §)=greseco+ipsec?os (3.14)
g
H(g) ) __ $\o . |on
H*(ﬁ);_“su' (¢*)3n¢° %9 ig&* as, (3.15)
n

Dividing these into two parts, it can bhe written by (3.6),

g(,,‘?()ﬂ)}=iﬂa(a)+ﬂ.<a>, (3.16)
Hc(a):HE+F(¢%¢O—¢D%)OLS=SL”qsangbods, (3.17)
ao=\{ (s.20—0Ls)is, (3.18)

Especially, since ¢, is even in & and ¢, odd if S is symmetric in fore and aft then H,
is real and H, is imaginary, so that

H*(0)=—H(f)=—H(6+x), (3.19)

4. Diffraction Potential'?

To proceed further, it is convenient to introduce here potentials ¢ and ¢4* as follows:
—Q%(P 0)=£¢¢*(P ﬁ)=——a~¢o(P ) onSandF 4.1y
on" "’ on ’ on’ ’ .

Since ¢, stands for the plane wave advancing with the uniform flow, we call it the
diffraction potential in analogy with the oscillating problem.

¢a has a regular wave in the negative side of the z-axis but ¢a* in the positive side.

Firstly, it can be easily seen to be, by Green’s theorem,

SSHF(%%%**——?S Pa* )dS SSS+F(¢*“_¢d - igﬁd)ds 0, (4.2)

because ¢ and ¢;* have their wave in the different side,
Then, putting (4.1) and (4.2) into (8.15), it can be shown to be

g% } zg S S+Fan[¢ 0+ {ﬁj:;f) }]dsr (4.3)

In the other hand, since
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[eos (oot tm)as=o

{3.15) also may be written in the form

ao) = aolt ( Jansioss.

Moreover, since these are equivalent to, for example,

7] 0
Hg)= —~— y— By
(6) SSHF{(x-i-sé) 5 $o— o an (x+¢)}ds ,
if the potentials can be represented by the source-sink distribution, that is,

the difference of {5@;55}:_
on S and F

the integral ean be taken around the source, and we may obtain
Ho=|| PP, 0ase=(| o, oads, ,
8+F S+F

In fact, for the thin ship, the first approximation is well known to be

o
on

O'd*zadz'aa—n¢°.
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(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

then, putting this into (4.7), these formula.are clearly consistent with (4.4), and also

it is equivalent to the next volume distribution by Green's theorem :

H(a):m b dndydz=2ig sec a” e, 2)esmectorisametg oy
» 0% § .

(4.9)

where D means the displaced volume of the ship, S the projection of S on the z—z

plane and 7{z, 2) the half breadth of the ship surface.

Secondly, making use of (4.1) and (4.2), the sum of two formula of (4.5) can be

shown to become
2Hc(0)=H(6)—H*(0)=H ( o ¢ )

Deforming the surface of the integration, it is equal to

Haw):%“ (#easm ¢—¢d)dwdy

(4.10)
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Since ¢¢ has also an asymptotic expansion like (3.12) as

ba(P, 0)—44’—.5”2 (6P, OVITL0, ') — Bl P, 0V HAB, ') sec? #de’ ,  (4.11)
50 27 §_aps

where

Hyo', 6)=Ha(6, 0')=“ {¢¢(P, a)§’—n¢ocp, &) — 6o(P, a')%m(P, 6)}dS (419)

S+r

After a lengthy manipulation, it can be shown that

Hc(o):;i%r " (H(0HAE, 6")— HA8, 016"} sect §'d0’ (4.13)

—rf2

For the thin ship, the approximation (4.8) gives

Hd(e, 0!):_292 sec 0 see GISS_W(W’ z)egz(sacza-}-seczﬂ'l+€gz(Secﬂ+secG')dwdz , (4.14)

8

Then, if we consider a function such that

LI]
Pai(z, t)=(-1)“§ e~t5e™ oog (2 secd) cosridd ,
- - (4.15)
Pl (x, t)-—-(—-l)"S et gin (x secd) cos™+14dd ,
0
(4.13) can be written in the form:
He(é‘)-:%g‘ sec 0“_“_@(90, 2w, 2 ) P2dgla—a'), g | 2-+2' |}
5 S
X e cos (g sec 6)dxdzda’dz’ , (4.16)

Since H, is clearly zero for the first approximation (4.9), this gives the second
approximation and is the different phase component with H, of (4.9).
Lastly, the funetion P,* is a conjugate to P, function” with respect to z, that is,

2
Py (z, t)=(—1)"§ e~t%¢% gin (1 sec #) cos**dd0 ,
[H

e (4.17)
P2, t)=(—1)"+‘S g-t=* 003 (1 sec #) cos**t6dd ,
V]
so that there exist close expressions with each other, for example,”
P, 0)=——5Ju(®) , (4.18)

P, t)=—'%6_mK1/z (%) . (4.19)
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and

Pz, t)y=—_VT _S e (| 5—v o | (4.20)
8T )-w

Lastly, as explained at the end of §2, the second order effect is very much complicated,
but it is easy to obtain the correction term from the preceding formulas. For example,
(4.16) is also such one.

More simpler formula may be deduced from (4.5).

Namely, deforming the integral of (4.5) by Green’s theorem, it becomes the volume
integral as

H(a):“i [(1+ g¢ ) 2ot gg %9;°+ gf ?‘*]dmd dz 4.17)
for the thin ship,
H(&):2S§ [(1+ 69‘)%?;%2—5 %ﬁ—"]n(m, Hdzdz (4.18)
and, for the slender ship,
H(&):S[(1+ 29, )aai" 1+ 98 % ]A(m)dx, (4.19)

where A{x) means the sectional area.

Comparing (4.18) with (4.9), the first term says that the doublet strength 7 in 2
direction is to be multiplied by (1+0¢/3x), that is, the local velocity.

This permits us an intuifive understanding.

The effect of this term is well examined and it gives a good correction for the deep
draft ship.»®

The last term in the integrand gives the correction to the induced vertical velocity
component and its phase is different with the above.

It is already shown in the case of the submerged body that the contribution of this
term is very large,” but such trial in the case of floating ships can hardly be seen.

5. Neumann Function!®

If there exists a Green function N(P, Q) such that

3 NP, @=0, onSandF (5.1)
a’qu

then all the velocity potentials may be written by their normal derivatives as

—_{{ 2
sap=—{| Z@NP s, 52)
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Such function as N is called a Neumann funection.s®
Since the singularity of this function at the origin is the same as S(P, @), it may be
represented as

N(P, Q)=8(P, )+ AP, Q), (5.3)
with a regular funetion A.
Then, it must be by (5.1)
9 __a |
MA(P, Q)= 31ig S(P, @) on S and F, (5.4)

In the other hand, it may be assumed because of (3.2) that

N(Q, P)=N*P,Q), AQ, P)=A*P, Q) (5.5)
and
¢*(P)=~SL+F %(Q)N(Q, P)dS,, 5.6)

where it is assumed that

& ax_ 0
¢ _6n¢'

n (5.7

Since A is assumed as regular in the domain and its boundary value is given by
(6.4), it can be represented by the same Neumann function as

A(P, Q)=§S _S(p, R)N(R, )dS» , (5.8)

S+r0ng

Thence, putting (2.4) and (2.5) into the above, it has next asymptotic expansions,
2
AP, Q55— 3 2MQ),  for s=as>ux, (5.9)
27’5?’03 j=1
where ro*='+y*+22, x,=%, €=y and

¢:—*(Q):H ﬁ“—"N(R, Q)dSz, (5.10)

S+FOnR

and

/2

A(P, Q) =%S {Bo(P, 0)pa*(Q, O)— S P, 0)paXQ, )} sec? 0d8 ,  for wp<xn, (5.11)

—xf2

Hence, N is also written as

NP, Q5 > ailai/ +4@),  for zo>aa, (5.12)
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N(PF, Q)——S [P, O} $o(Q, O)+2%(Q, O} —Fo( P, 0)(Q, 6)+$a*(Q, O)}] sec6d0 ,

-1 f2

for zp<2y,
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(5.13)

Putting these into (6.2), the asymptotic character of the velocity potential can be

easily deduced, namely,

1 2
P=— B
$(P) F—e %m, ; for >0,

where
B;ﬂ-“ﬁp%%(xj+¢j*)ds ,
and |
$(P)= %Siz{m@ 6)H(8)— G P, O)H (6)} sec* 646,  for <0,
where

=— 86 *
Ho=—{{ ig0r+srenas,

which is the same but more general one as (4.3).
For the slender ship,

and especially, if

0¢ _ 0z
on on
then
B,=p. the displacement volume}
B, =0:
and

o(P)= (ZV)EPB( ), for 30,

6. Conclusion

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

The second order correction to the botindary value problem of the wave-resistance

theory contains many difficulties.
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In this paper the author tries to formulate its boundary value problem for a float-
ing ship with respect to the ship surface condition as a limit of a submerged ship.

But there is no promise that the solution of this problem represents the water
motion around an actual floating ship, or it seems preferable to consider as that there
may be many potentials satisfying the under water ship surface condition except on the
a cross line of ships water line with the mean water level surface.

Nextly, the velocity potential consists of two parts by introducing the reverse flow
potential which has the same boundary condition as the above but leaves the wave
system in the reverse direction, the one of which is the same as the one of the reverse
flow but the other of which is different only in the sign.

Thus, the wave system of both potentials is the same except the phase.

Lastly, introducing the diffraction potential, that is a potential diffracting an
elementary plane wave by the ship, the equivalent of Haskind-Hanaoka’s relation in the
oscillating motion can be deduced. Namely, Kotchin funection or the amplitude funection
can be calculated by the knowledge of the diffraction potential. Moreover, there is also
the equivalent of the energy integral in the oscillating motion and this gives the difference
between two amplitude functions of the ordinary and reverse flow potential.

For this formula, it may be possible to estimate the out of phase component to the
first approximation.

These important characters of the diffraction potential come from the fact that
Neumann function of this boundary value problem can be represented asympotitically at
infinity by the diffraction potential.
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