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Abstract

The author treats with the problem of the rolling motion of ships among
waves in view of the two-dimensional theory of the water wave.

Firstly, he constructs the integral equations to determine the velocity potentials
neccessary to solve this problem and shows that the diffraction potentials ean be
deduced from other potentials. From this fact, Haskind-Hanaoka’s relation with
respect to the exciting forces of the wave can be understood easily,

Secondly, he solves the equation of motion and shows that the roll-exciting
moment of the wave can be represented by making use of the coefficient like as
the effective wave slope one in the classical theory but this coefficient is deduced
from the coneept other than in the classical theory.

Thirdly, he gives the approximate values of all necessary quantities when the
wave length is very much larger than the ship breadth, and considers the pos-
sibility to make zero or reduce the roll-exciting moment, he touches the experi-
mental methods to investigate this problem, especially Motora’s method to measure
the roll-exciting moment of the wave.

1. Introduction.

The classical theory of rolling motion of ships developed by Froude, Kryloff and Wa-
tanabe seems reliable in most cases at present [1]. It has, as the basis, a sound physical
interpretation of that phenomena but its theory has a serious weak point in view of the
recent theory of the water waves, and many authors attack this problem in this stand
point but there remain some points to be elucidated more clearly as Ir. G. Vossers says
in his lecture [14].

In these research works, F. Ursell finds out that there is two dimensional cylindrical
section :shape which emits no wave in the rolling oscillation about an axis [11, 17] and
T. Hishida also independently states that there is an axis of any section shape the oseil-
lJation about which emits no wave [8, 9, 10].

In another respect, we have Haskind-Hanaoka's relation with regard to the wave-ex-
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citing force that it is proportional to the square root of the wave-damping [12, 15].

Hence, we arrive easily the idea that it may be possible te reduce the wave exeiting
moment and then the rolling oscillation by selecting a suitable center of the rolling
motion. This possibility, however, can not realize successfully although in the heaving-
dipping motion it does, [21, 22]. This is mainly because of the existence of the swaying
oscillation.

Thus, we feel the necessity to verify the theory once more espeeially in its physical
meaning and validity.

2. Velocity Potentials. [5, 25, 26, 28]

Consider the water motion around an infinitite eylinder floating on the water and
assume that its cylinder is symmetrie

B

WAVE — about its vertical center plane and stands

_____:“--\g for some section of a ship.
) 3 Taking the coordinate system as
. ] \ T shown in Fig. 1, and assuming that all

T

/ X\l\ motions are periodic in time with circular
! ~ frequency w=2r/r, ¢ is the period, we can
v introduce the velocity potential ¢(x,v,t
Fig. 1. Co-ordinate system. as ye @y, 1)
@(x, ¥, )= Re[o(x, ¥)e*t]=¢. o8 wt—@, sin wi @.1D

where the suffix C and S stand for the real and imaginary part, the pressure P(z,y,t)
except the statical buoyancy equals, for the first approximation,

. d .
P(z, y, )= Re[p(x, y)e‘“‘léa—tﬁ(w, ¥, 8) 5 P, Y)=1lwp(, ¥) , 2.2)
and the surface dislocation downwards 7(x, {) is
.i '—_.a_@. — _ﬂ iwt]
257 0= =5 @0, (e, H=Re| 2= o(x, 00 |, (2.3)

where g is the gravity constant.
The pressure must be constant on the water surface and this condition becomes for
the velocity potential as follows:

d _
Ko(z, 0)+ a?so(w. 0)=0, 2.4

where
K=uw?lg .
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Now, in the stand point of the linear theory, the whole velocity potential can be
superposed of each velocity potential corresponding to all component motions.
Let the suffix stand for the related quantities of each component motion as follows:

0 .......... the incident wave

1 .......... the swaying motion (x)

2 .. the heaving-dipping motion (y)

3 e the rolling motion about the origin

4 .......... the diffraction of the ineident wave

- S the relling motion about the center of gravity and of course this is com-

pletely dependent with the motion 1 and 3.
The boundary condition of each velocity potential over the immersed cylinder surface

Cis

0t W —iaX; O i
an gp’(x; y)_’l’wXJ an !’ -7'_1: 2r 3 ’ (2-5)

where n is the outward normal of the curve C, X;is the amplitude of the oscillation and,
for the convenience, to be understood that it is also written as

X=X, X;=7, Xy=0, X;:=0, Xu=Ka=0., (2.6)

where a is the amplitude of the incident wave, and so f», is the maximum wave slope,
and x=x, xo=y and «s is a harmoniec funetion regular inside the cylinder and has the
boundary value

Xs=Y G —& oy ’
an an an (27)

similarly as=x:—lxi=as—lo

It is also convenient for the following treatment to normalize quantities, namely,

(,Oj(w, y)':inj?S?-(x: y) s .7':1: 21 3: b ’

i (2.8)

g
th —ha —_— '=
en — iz, )= P 1,2,38,5,

In these potentials, &; is clearly given as ¢s—Ii¢i.
Similarly, being a the amplitude of the incident wave coming from the positive diree-

tion of the z—axis, we have

ou(@, 1) =225, ), (i, ) =g 143K 2.9

a—i—(¢o+¢4)=0 (2.10)
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Moreover, we can divide the incident wave into the stationary wave, that is,

Po=Poa+1don }
Pra=e XY cos K, pos=e¢ %" gin Kz , @11)
Accordingly, the diffraction potentials alse can be done as
Dr=dua-+ iz , (2.12)
a d .
F’n—(sﬁm-%-sﬁm) =a—n-(¢43+ Gox)=0, (2.13)
Thus, considering the curve C symmetrie, it is clear that
¢.’i($, y)=—¢;(—w, ) for jzlr 3’ 5: 4B . } (2 14)
¢j(xr y):¢3(_m! y) fO]'.' jzzy 4A v '

Meanwhile, all the velocity potentials having radiating waves can be represented as

_ L (B 40 6 \asw g
3 9= (GoG—dG aSE,v), 215

where G is the unit sink potential and

G=Go+iGa

AN | (w—w’)2+(ymy')=] S” "KWt gog (z—a') dk
X, Y, T, =— p -2P. V,
Gelmyi o', 0= I°g[(x—m')=+<y+y iz ) k—K } (2.16)
Go=2re-K@—2"
Since
G(m, ¥ wl’ yl)xm»lzﬂ-ie—xw-!’y’)—i.?ﬂz-!ﬂ' (2-17)
then we have
y E+ —Ky—iKz
qim?,ﬂ (K)e%v o (2.18)
WI%H_(K)Q—KV+1K:; s
where
H4(K)= S (—aﬁ—gzsi)e—mmds, @.19)
e\ on an
Moreover, since there is the relation (2.14), we have
I-I,-’f(K):Hr(K):S (igﬁ:‘—gﬁ:‘ i)e—m cos KudS
s\ on on
for 7=2,44.
(/3 3 i (2.20)
Hj+(K):——Hr(K)=@Sc (%gﬁj—m%)e‘“ sin KwdS,

for 7=1,8,5,4B.
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We can write (2.15) as two formulas, that is, the real and imaginary part respective-

ly, putting the boundary condition (2.8),

S, py=—2 (-2 .j_ _exu[COS Kz
i, V)= Sc ( 5y @it o )GadS € ﬂ(_%_ i Km)H’ﬁ;(K) ,

2.21)
. _1 hm(cos Kz ) . (
Bism, 1) =5 S (—pa5 )chS+e Ko V),
cosine term for j=2,
gine term for 7=1,3,5,
where
1 (e
Hi 7). on \gis (ana an J° ds, (2.22)
Especially, for the diffraction potential, remembering (2.10) and (2.18), and since
1 9
o Sc (—a‘;?f’n 550 )GdS o,
we have
B4 {o+ )
Paa z——l-g (Postan) }2_GdS (2.23)
O T Je (Pon+Ps)
and
Hﬁ(K)z—S (¢u+¢4)%e‘”+““d8, ©.24)
Hence, similarly as the above, we can write down as
Paac(a, y)}:" E (¢OA+¢4AC) G.dS-te _Ky( cos KmH:;s)
$1c(, ¥) Por+ Pnc isin KeHY, /-’
$sas(z, ’.tl)}z S (¢4As) 9 q.4s +e-K%'( .cgstH;qO) (2.25)
$uns(z, ¥) Psps —isin Kzl /)’

All equations of (2.21) and (2.25) along the boundary C can be understood as the in-
tegral equations to determine the doublet strength ¢ on that boundary. Each pair of these
are integral equations of Fredholm’s second type, and might have unigue solution.

As easily seen, however, all of them are not independent with each other and there
are the same functions as others except a2 constant multiplier. Thus, we can find

Pus(z, Y Hib(K) =gas(z, WHG(K), on C . (2.26)
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+ 2 cyr

(Poa~+Gaac)Hiuo —1:¢4As(1+?:Hus) . } on C. @.27)
(Por+dinc) Hiso =idens(1+i1HSs) ,

brasHb=desHiio, dapsHip=d1sHiko, on C, (2.28)

These relations reduce very much the labour to solve the integral equations. For
example, if we know ¢ and ¢, already, (2.27) and (2.28) show that we have a sufficient
knowledge of the diffiraction potential. Haskind-Hanaoka’s formula is easily understood
from this fact. In the form of H-function, these relations get to the following formulas

Hi(K) _ H(K) _ His(K)

— , 2.29)
Ho(K) Hp(K) Hpo(K) (
.H+ — H+ N H+ a,
- 4:13 ( 4:0) +( 4:3) (2.30)
%Hms =(H4BO')3+(HABO)B r
H&:‘ _ Hz-,t‘ HJBS —_ HI-E‘ 2 3]_)
H‘i-gﬂ H{E‘ ’ HA{EU HI-E' ' '
3. Forces and Moments. [15, 25, 27, 28]
Let Fij be the j-force or moment by the i-motion, then, by (2.2)
Fu‘——*—-pg p(x, y) ixde=—pin o(x, y)ia:a'dS ,
¢ on ¢ on
in the normalized form,
Fi d g
= =\ & idS=—\d;—¢idS , .
In the same way, the exciting force or moment Ej is represented as
=i _ Ky
=it —Sc ($o-+ =i 3.2)
Then we can easily find the well-known relations by applying Green’s theorem.
Ji=fi; 33
ei=—HiHK) (3.4)

The latter is Haskind’s formula and its generalized form to more general cases is

derived by T. Hanaoka independently and he suggests the possibility to obtain the wave
exciting force from the forced oscillation tests.
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The imaginary part of (3.1}, that ig, the damping is also evaluated by Green’s theorem,
and

Im { fily=Ffis=—HHK)Hi*(K) , (8.5)

Nextly, since the real part of (3.1) is the added mass term, we put it as follows for
the simplicity;

Fuc=k(KW , fuc=k(KW ,
fs1c-_—flac=k1(K)l1(K)V , } (3.6)
Frac=k:(K)e2(K)W ,

where ¥ is the area of the cylinder.

Then, k: and ke are the added mass coefficients, xs is. the radius of added inertia and
I, is the distance from the origin to the center of the added mass for the swaying motion.
Lastly, if we put

63/81———H3+(K)/H1+(K):l‘“ ! } (37)

35/31=lw—'l ’

we know by (2.29) that l. is real, namely, the exciting motion of the incident wave is in
phase with the exciting force in the z-direction. This is confirmed by the numerical ecal-
culation by K. Tamura [20].

From (3.5) and (3.7) we have for the damping the relations:

Suss/frse=fuas/fus=lw , } (3.8

fssS/flsS’:qu/qu:lw—l R

which is also confirmed by the caleulations [20].

All of these quantities for so-called Lewis forms are calculated by K. Tamura and F.
Tasai so that we could solve the equation of the motion [18, 20].

However, it is convenient to show their approximate values for small K value, that
is, when the wave length is much larger than the characteristic length of the eylinder in
- the present problem. In such case, the velocity potentials equal nearly of the limit case
K=0, namely, when the water surface is assumed as rigid [8, 9, 11, 13].

Thus, the appoximation for (3.6) is

fue=k0F ,  fuoSkO)OV } 3.9)

Fuc=k(OLOW ,

Here, since k2(0) becomes usually infinite, it must be considered always as dependent on K.

For the wave exciting forces, expanding the exponential term of (2.19) and taking its
first term, we have
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H1+(K)'=.'£KS @%@—@%)dsm—mﬂuko, (3.10)
Hz+(K)-=.S %’:dS—KS (y%%z_—qiz %fi—)ds:K(HkgV—B, (3.11)
Hs’f(K)‘:.iKSc (m%%i—¢ag—z)d8=~iKV(O_M+k1h), (3.12)

where B is the breadth of the cylinder and OM is the distance between the origin O and
the metacenter M measured as positive when M lies below the origin, that is,

oM=—L{ ;99 ;o1 Ox .04
OM= 7 Scm on dS= 7 So (wy o — gt o )dS

=0B—BM, BM=B%12, (3.13)

— e ORT |
e BO)/ T, b}/ T

\\

—— et 1 0
\\ W0/ T
£=0

0.5 T =X

0.4 05 06 07 0.8 0.9 1.0 11

Fig. 2. Metacenter, center of added mass and point on which
wave-exciting Force acts.

Since the statical inclining moment proportional to the displacement acts on the
metacenter M, (3.10) and (3.12) show that the exciting force of the wave acts on the
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point F' which lies between M and the center of the added mass as shown in Fig. 1, where
B means the center of buoyaney.

Making use of (3.10) and (3.12), (8.7) becomes

Lo =(OM+kd)/1+ky) , (3.14)

Hence, for small K-value we know that:

i) The wave exciting force for z-direction, (3.10), does not vanish generally as far as
the velocity potential is of single valued [24].

ii) The forece for y-direction (3.11) vanishes when
B=K(1+k)¥ , (3.15)

This is the fundamental idea followed by S. Motora [21].
iii) The moment about the origin, (8.12), vanishes when

OM+-kily=0, or l.=0, (3.16)
e (00)
3.0
\\ —— e k]_(o)
~
\\
‘\
25 \\
e N 2T=05 _-
2.0 -~ = -..____fgf__--o 2
i.\
B/2T=05  [“~~o_ 23
15 \\ i S R -
N 1907
2/3 =3 e
10 N Scas i
. \ \\ ’.\*é’/
-.\ hhhhh \ ——--..-.'-w-_,:?,- -’," }’0 r-a
05 “‘-kh__ b\c\"_“_—:— fff -
- ] Cop—— 1.0
\th 15 L
20
0 Ca .

05 06 07 08 09 10 11

Fig. 8. Added mass coefficient.

Thus, Ursell’s eylinder having no wave-damping is the section form which satisfy the
relation (3.16).
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iv) The exciting moment of the wave about the center of gravity vanishes by (8.7,

l=lo= (OM=+ kil )/(1+ k)
thig fact [9, 22].

Hence, there always exists such point as T. Hishida says, and Isshiki et al. reaffirmed
In the same way as the above, we have the approximation for K=o in the same
form as (8.9) and, for the exciting force, since we ecan assume that the wave emitted from

the one side can not go to the other side, considering the ship' side is vertical near the
water surface, we have by the formula of T. H. Havelock [4].

2.0
\ S— GO L CO)
18 T
e B0V -5
T2
1.6
14
)
]
1
a [
1.2 ‘1‘ rd
v
e | [ )]
1.0 ‘\‘ |- =20 Jisy
i
\ \

Fig. 4. Least Radius of gyration of added inertia.

HHK)= 25:"%6—1{% BE
0 8:1:

2 KB

dys -6, 3.17)
o 4 <ER

Hy*(K) -—_.zgo ai:e—ffm Pdys—Zier

(3.18)
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Accordingly,
l.51/K, (8.19)
This value is an accurate approximation for large K compared with the calculated one
by J. Kotik [16].
In Fig. 2, 3 and 4, these approximate values for Lewis form are shown [28].

4, The Equation of Metion. [2, 25, 28]

The equations of motion or more accurately, the balance equations of the linear forces
and moments when the cylinder moves stationarily the harmonic motion among waves,
are, except the time factor,

2
—%WX=F11+F15+E1 ’

2
—%WY—prY:Fzz+Ez , ' 4.1)

2 [
_%I8+WGM5=F51+F55+E5 )

where W=pgF, I=W«* and « is the radius of gyration,
Introducing the definition of the preceding paragraph, we can rewrite then as follows:

4 +f11)x+f155=%ﬂ1+(K) , (4.2)
2 __,,L'_" _a
(m +fos KGM)9+f1:.X— KD, (4.8)
B\y_ & o,
(V—l—fzr—f) Y=L H(K), (4.4)

Since we assume the symmetry of the eylinder, the heaving-dipping oscillation is in-
dependent on the other ones and the solution is

_ aH:*K)
KF+fu)—B '’ 4.5
If we put the approximation (3.11) into the above, we have
Y=a, (4.6)

that is, the eylinder moves with the wave,.
But, at the resonance, that is, when

KV (14 fac)=KV(14+-ks)=B , 4.7
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we have from (3.5)

Y=ia/KH:*K), (4.8)

thence, if the exciting force of the wave vanishes, comparing 4.7) with (3.15) we must
conclude that the heaving amplitude becomes infinite at the resonance as far as we consider
only the wave-damping.

This is a natural consequence of Haskind’s formuls in two dimensional problem which
says that the wave-damping is proportional to the square of the exciting force. But, ac-
tually, there is another damping, say, the frictional and eddy one, so that we may expect
to reduce the oscillation by reducing the exciting force.

On the other hand, the swaying and rolling oscillation are dependent with each other
by the term fis.

The solution is easily found as follows:

Xija=D/4, 6/8.=D:s/4 , 4.9)
where
DI:%{(XL}-A;MZ-— igf) —klczl—z)(zw-z)}Hﬁ(K) ,
v (4.10)
D5=f’.{(1+k1)lw-—(l+k1l1)}H1+(K) ,
Re{d}:{(l —E—kl)(rcz-l-kmﬁ—%)—k;”(l;—l}e} 7,
GM (4.1
-Im{4}={(,;z+k1x52- ?)Jr(1+kl)(z—z,.,)z-—2k1(zl—z)(zw—z)}V|Hi+|= ,
klxszV=f55(;={x32—112-|—(l—l1)2}k117 ’ (4.12)
At the resonance, since there is the condition,
Re{At=0 (4.18)
we have from (4.11) '
g=KADE - KhGd) 418

itk TS
Putting these into (4.9), we have
6/6u=1(1+k)V |(K*Ds) ,

Xja=—iki(L—DV [(K*Ds) , (4.15)
O/(KX)y=—Q1+k)/{Kles(l:— 1)}

In another way, we have the exciting moment of the wave from the first and the
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third equation of (4.1) as follows:

M__ _—iKD: _ 1 (, Itk

= = +
pgdbn I+t TKV\™  1+k )H‘ (K, (4.16)

Thus, we see in (4.14), (4.15) and (4.16) the same conclusion as in the heaving oscil-
lation.

Moreover, if we introduce the coefficient of the effective wave-slope as usual as [1,
5, 6]

Mi(ogV 0)=7GM , 4.17)

Comparing this with the above, it is given as

% (l _ I+kila

"= KGMY 1+k:

)I—Iﬁ(K) , (4.18)

When K is small, putting the approximation (3.10), (3.13) and (3.14), we have
r=1 (4.19)

This may be the correct conclusion of the present order of approximation [2] and this
means that the exeiting moment of the wave can not vanish in free rolling motion, al-
though there exists always a point about which the exciting moment vanishes.

1.0

0.6 3 ~
Q\\ i \\\\\; \\{k
N Y
04

. + B/2T=1, Ce=.78
Ts S~
\\ ® » ” » '940
0.2} -
_——— T o A . 15, 78
I{T E 2 " ” '947
A L. .

02 04 06 08 10

Fig. 5. Calculated examples of 7; and 7m.

This is because the reaction of the sway motion cancells out the exciting force of the
wave ag if there were no dynamical effect.
In the definition (4.18) of y we can also divide it as
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1GM=7,0G—rnOM=7,GM—(7:—1=)OM , (4.20)
re=tH " (KY{KQ+E)F}, (4.21)
Tm=ra{(1+kl)lw_"klll} » (4,22)

Then, the effect of the center of gravity upon 7 is confined itself on the first term of

(4.20).
Some examples calculated from F. Tasai’s tables are shown in Fig. 5, [18, 28].
Since we have, expanding the exponential term of H; to the next,

. ) g i

@H1+(K)/K=.(1+k1)A—K§ (¢1—+ —)xde ,

m 3
woom (4.23)

{HyH(K)K = (W—i—klh)d—KS (qssi +%)xyds ,

an
] T
i 1
\ .'
Voo A/T Y
30 \ i
I S c/T HE
[} ! I |
1 ! ]
A i [
\ i/
25 A ; /
: : i
\\ B/ZT ’]’I
7/
"n2/3 4
20 \\\ I”
N \ B/2T s
\ A ,/ !
Y AN i
AN N\ =20/ /’
15 A h I 7
) N N\, 7
\9\5 \\\ /,/’ ,/1 5
——) e ,"’ /)
-_---:km: - \\\ /’
1.0 . AP — S <
— . Pl
P— - ~ -.._\
10 e Ny
— o T/ —d il ot T \Lk ™~
0.5 _2/3 AN e
- 0.5 N 3
~ ~
1.0 ~
\"-.‘\\ Cﬁ \\\\
"~ N
O0—%5 05 07=-08 098 10 11
\\\L\
—05 o
) 1
\\\
\\

Fig. 6. Funetion 4 and C,

putting these into (4.21) and (4.22), we have the following approximation.
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sy __1 ory , .. 0%
r=l1-KA, A= (1+k1)l7§c (¢1 o )dS, (4.24)
rn1—KC, O_MC=—k1l;A+S (;zsﬁ”ﬁ'*’i +m'y%—)d8, (4.25)
. on on

where ¢, and ¢s are considered as the limit potential of K=0,

Then A, C and approximate y are easily calculated for Lewis form as shown in Fig.
6 and 7. Comparing these values with the exact values in Fig. 5, we can see that they
are fairly good approximation for small K.

If we neglect ¢1, ¢ and k: in (4.24) and (4.25), we have the classical theory by Froude-
Kriloff-Watanabe and

1.0

. /
/

0.4 B/2T=20 z/
B/2T=15
B/2T=1.0
y 0.2 / ‘1.:/’/
. 0 / -//
P SR
—02 < B/2T=2/3

—

=7 paT=s

—0.4 /
/ Ca
05 06 07 08 09 10

Fig. 7. Approximate value of OM{(Tn—7.)=KOM(A—C).

rGM=7'0G—71."OM , (42.6)
11— ' ’—l. _ag:__ =0F
Ws1-KA, A== Scwy % 4508, 4.27)

el — ' ’=———-——1 2.2
' =1—KC', C m“(w Pdady , (4.28)
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These formulas are not exact theoretically, but they are analogous as (4.26) and (4.27).
Hence, the present theory may not be so different with the classical one in this cha-
racter.

Now, let us consider once more the problem to reduce y to zero.
By (4.20), (4.21) and (4.22), at first,

r=0 for 7,=0, (4.29)

but this is not realistic because the sway-exciting force does not vanish in usual [24].
Secondly, puting (4.24) and (4.25) into (4.20) and considering that the added moment
of inertia is very small in usual and K-value at the resonance is nearly

K=GMjx (4.30)

we have

10.40

0.35

1.0

08 0.30

06

0.41 ‘:ﬁ; / Jdooo

0.2 D}ggA—Q/ 0.15
M GM/T 0.10
0 :

0 02 04 06 08 1D

1

Fig. 8. Combination of the metacentric height and the radius of
gyration which has no roll-exciting moment of wave.

r=0 for 2= fo = AGM—(C—AYOM (4.31)
Thus, as shown in Fig. 8 for Lewis form, if we select a pair of GM and « on the

straight line, 7 becomes nearly zero. However, such pair of values means generally a very
short period of the resonance,
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5. Experiments. [28]

Many authors have carried out the experiments with respect to the verification of the
theory of waves and reports that the theory is very accurate and F. Tasai describes also
that the rolling motion of a ship is predicted with fairly good approximation [19] but K,
Tamura tells us that theoretical prediction of the rolling motion is not very good with
the two-dimensional eylinder [20].

Now, the equations of free motion without the incident wave are from (4.2) and (4.3)
except the heaving,

F 4+ f1:) X+ f1:6=0 ,

(sz-{-f“—i

K?W)H fisX=0 CRY

Of course, they are not true equations of motion but merely linearized and neglected the
external forces to keep the harmonic oscillation.
The first equation of them gives

X[f=—fus|F+ fr) =k —1)/(1+ k1) , 5.2)

neglecting the imaginary parts to be considered as small. This is the same as the third
of (4.16), and that, putting this into the second equation of (5.1), we have

GmM/Kl?EE+fsscf7——kxz(h—l)z/(l—l-k:) ) (6.3)

which is the same as the resonance condition (4.13).

Thence, the free motion of the cylinder is similar as at the resonance among wave,
and the energy loss of the cylinder in both conditions must be the same. Since the energy
loss by the emitting wave per one swing is

-pi—KIQHs'*'-l-XHﬁIZ ,

and the loss of the potential energy is
ogF GMB A6
where 46 is the decrement of the inclining angle per one swing, equating above two loss

and using (5.2) and (4.18), we have

B _ = gspgmy, (5.4)
7} 2
‘At first, this value for the usual K-value is very small, and it seems impossible to

plain the damping of usual ships.
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Secondly, it seems to contradict the fact that the upper the center of gravity the
greater the roll-damping is [29].

Hence, in two-dimensional problem, the theory does not seem to be able to predict
the actual motion as K. Tamura observes, but, in three dimension, it may success as Tasai
does because the fore and aft end parts of a ships emit comparatively large wave as Hi-
shida says [10]. In any way, since the wave damping is merely a part of the whole
damping, it is more important to study the frictional or eddy damping in this respect.
It is actually impossible to obtain the exciting force of the wave from the damping
measurement although it is possible by Haskind’s formula if there would be no viscosity.
Of course, here is yet a possibility by measuring the diverging wave amplitude of the cylinder
forced the harmonic oscillation, but its measurement is very difficult [17, 22).
Hence, we may measure independently the exciting force of the wave.
§. Motora et al. proposed a method to measure the inclining moment M among waves
restricting only the angular displacement [1].

The equations of motion in this case are

(4 +fu)X=%H1+(K) ,
M 5.5)

— &t L
frsX=—cHs (K)+pgK ,

The swaying amplitude is given by the first equation as

X HYK
S AT 0 5.6
a KF+fi)'’ 6.6)
and, comparing with the definition (4.21), this is
X in. .7
a
Putting (5.6) into the second equation, we have
M _ (1+k)HiH(K) /lw—‘ I+kdy ) 5.9)
gV 0 +fE " 1+k /' '

which equals (4.16) neglecting the imaginary part of fu in the denominator.

This formula gives us the theoretical basis of Motora’s test. Moreover, the formula
(5.7) permits us to estimate the coeffictent y, from the swaying amplitude and also 7 by
(4.20). These tests have been carried out successfully at Tokyo University and the present
theory seems reliable at least up to this day [23]. '

In the experimental point of view, the present theory takes the so-called active resis-
tance into account but its practical treatment is similar to the classical method as we see
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cept the physical explanation of the cofficient y which is called the effective wave-slope
" one classically, because it is verified experimentally that the effect of sway oscillations does
" not serious for the rolling motion as a whole classically [7].

Namely, as explained in the preceding, it is more realistic to understand it as the re-
ducing coefficient of the statical metacentric height, when a ship moves among waves re-
ceiving dynamical forces and the statical buoyancy from the water. Hence, we may call
yGM the dymanical metacentric height.

Another one of new points of view in this respect iz of roll-reducing action of the
bilge keel. Namely, it acts as an eddy-making damper and has no influence on the exciting
force in the classical theory [1], but taking its added mass into account, it has also an effect
to reduce it in the present theory, because the bilge keel with its added mass acts as if the
cylinder has a fuller section coefficient than the true geometric one, and the fuller the sec-
tion, the smaller r is as seen in Fig. 7.

The experiments verify this fact [23].

6. Conclusion.

The theory of water wave of the two-dimensional oscillatory eylinder is one of the
most advanced in this field, and explains successfully many experiments but the direct
application of it to the rolling motion seems hopeless as K, Tamura’s experiment because
of the effect of the viscosity, especially the bilge keel, can not be neglected.

On the other hand, the classical Froude-Kryloff-Watanabe theory explains well the ex-
perimental result as a whole. Thence, in this paper, the author tries to abridge this gap
in the one side and, in the other side, studies the problem to reduce the exciting moment
of the wave, making use of Haskind-Hanaoka’s relation.

The conclusions are as follows;

i). Some of all necessary velocity potentials are dependent with each other, especial-
1y, the diffraction potentials are all derived from other potentials.

From this fact Haskind’s formula is easily understood.

The inclining moment and the swaying force of the wave excitation is in phase.

ii). When K is very small, this is usual in the rolling motion, the center C of the
added mass for the swaying lHes under the metacenter M but just on it in the elliptic
section.

The lateral center of the wave-exciting force lies in the segment CM with the ratio
1: %y, k: is the added mass coefficient to the displacement volume, but the exciting
moment of the wave in the free motion equals the statical one because the inertial
reaction of the swaying cancells out the wave force corresponding to the added mass
force acting on the peint C.
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iii). The wave-damping of the two-dimensional eylinder seems so small that the rol-
ling motion cannot be explained theoretically in general.

iv). The inclining moment of the wave is represented in the form
Mipgl8u=1rGM

as like as in thh classical theory.
It seems convenient to divide it as

Tm= raO_G'_ TmW'—' T;CW-]— (T: - Tm)m ’

because 7, and r» are independent upon the center of gravity by this substitution.
Experimentally, these coefficients are measured by Motora’s methed.

v). There may be possibilities to make zero the rolling moment of the wave, but
they seem difficult to realize for the practical case at the present stage of knowledge.

vi). The bilge keel has a function to reduce the exciting moment of the wave.
The recent experiments show that the present theory is moderately reliable.

We could a parallel analysis in the three dimensional case, but the problem is very
difficult in the numerical analysis and in the point what it can not be assumed usually
that the incident wave from any direction is much larger than the ship length. Of course,
the strip method will be a possible way to solve the problem, and F, Tasai says that the
theory fits well to the experiment. However, otherwise the effect of the viscogity were
taken account into the theory, especially of the function of the bilge keel, it will be difficult
to understand the motion of ships.

Lastly, the author thanks with his heart to Prof. Motora for his many kind and sug-
gestfull diseussions through the present research.
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