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- Summary
/
By making use of the slender body theory, the author studies into the optimum con-
figuration of the frame line form of ships. :
Firstly, fixing his eyes upon the energy of the secondary flow around the frame line,
he finds out that there are ship forms which have no secondary flow as like as rotational
bodies, the stream lines on such body become approximately geodesic and, if so, there
may be no cross flow in the boundary layer by Squire’s theorem. He calls them Approxi-

mate Geodesic Stream Line Ship Forms and shows some examples represented by Lewis’

conformal mapping function.

Secondly, he deduces some typical ship forms by setting simple characters upon the
secondary flow and they contain the so-called U-frame, V-frame and bulbous bow form.

Lastly, he analyses three representative practical ship forms and finds out that the aft-
bodies of three ship forms are all nearly the forms of which the secondary flow is the

minimum.

Although the theory developed here does not foretell the resistance quantitatively, it
seems very usefull to design the optimum frame line configuration of the ship.

Introduction (

Recently, progressing the theory of wave-
making resistance, a turning point would
have been appeared in investigation of ship
forms. Since the theory of minimum wave-
making resistance could concretely determine
ship forms and qualitatively coincides with
experiments well, it seems to be no wonder
in this situation that by developing this
theory ship forms fitted with given purposes
could be determined theoretically. Wave-
making resistance, however, as verified
theoretically, determined mainly by the sec-
tional area curve and this theory is power-
full for determination of the sectional area
curve but powerless for design of the frame
line configuration except the special case
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such as bulbous bow. The theory is not
also valid in the range where phenomena
caused by viscosity are thought to play a
principal role as the sterns of low speed
ships. Although, in consideration of these
facts and in order to design more desirable
ship forms it is of course necessary for us
to study on viscous resistance or boundary
layer, it seems necessary before doing it for
us to grasp and interpret hydrodynamically
phenomena of flow around ship hull and, if
possible, to set up definite object to arrive
at after investigation. Considering full ship
form especially, author has made a few at-
tempts {rom the thought on the possible
dependency of sectional area curve on the
form effects of viscous resistance, but practi-
cally speaking there exists no theoretical
background for determination of the frame
line configurations and we find great difficul-
ty in determination of ship forms?#®,
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Now it is not strict but natural thought that,
ships being generally slender, the section
shape uniquely determines flow in the plane
normal to the direction of the advance almost
independently of the fore and after sections.
These intuitive consideration had been ex-
tended to the so-called slender body theory
in aerodynamics. Making use of this theory,
Jinnaka showed a method to calculate stream
lines around ship of which framelines are
approximately represented by Lewis form
and found that they agree well with the
experiment®. In theory of ship motion
(especially in sea way) this theory has been
made use of and developed as strip theory.
Considering fairly good coincidence between
experiment and theory and contributions to
the progress of research in that field it should
be natural for this Jinnaka’s method to be
extended further. In fact the direct numeri-
cal calculation by the computers recently
coming to have great capacity has made it
comparatively easy to solve flow field around
three-dimentional bodies, but for it is still
complicated, this method which tells change
of section shape along ship’s longitudinal
direction has no effect on the secondary flow
makes intuitive consideration easy and so it
is approximate but practical. In short, in
view point to give the possibility to study
on the phenomena, by leaving the inter-
ference between each section out of con-
sideration, method is excellently superior,
qualitatively at least but not to say quantita-
tively, to the accurate theory which gives
complicated results. On the back ground
of the above discussion, problem of wave-
making resistance being not considered in
this paper, considerations are carried on the
flow around so-called double model in the
infinite fluid by making use of the slender
body theory. Here interesting subjects are
“relationships between a frameline configura-
“tion and flow around ship hull, characteristics
© of three-dimentional boundary layer and
resistance caused by the vortices observed
near the bilge.

1. Slender Body Theory®?®

Let’s take rectangular coordinate as shown
in Fig. 1, &axis directed longitudinally and
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Fig. 1 Co-ordinate system

y-axis downwards vertically. Ship hull form
is symmetric with respect to yé&-plane and
is so-called double model with its reflection
with respect to x¢-plane. We neglect visco-
sity, assume the motion of incompressible
fluid and introduce velocity potential. If a
body is very slender, then perturbed motion
of the fluid caused by the body, being ob-
served in the sectional plane ¢=const, is
supposed to be nearly two-dimensional near
this plane, and '
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P v =0 (1.2)
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may be assumed. Since ¢ is two-dimensional
harmonic function under this assumption, it
can be obtained easily by making use of
conformal mapping. A boundary condition
for ¢ is given by the projection of the exact
normal velocity onto the body plan, which
may be got by drawing but here we devise
a method of applying mapping functions for
analytical convenience. First draw the sec-
tion of ship on Z(=x+iy)-plane, and suppose
that it is mapped on unit circle of {-plane.
Take two sections apart by ¢ and let normal
distance between the two sections gy, then
normal velocity », on the boundary is by

J
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Fig. 2 Variation of Frame Line

Jinnaka (Fig. 2)
(1-3)

Meanwhile as both sections are mapped on
the same unit circle, two points on z-plane
corresponding to the same position and ¢-
plane are apart by dz. If §¢ becomes very
small and both sections approach infinite-
simally each other, clearly o6v might be
obtained by the normal component of §z.
Therefore, take girth length s which is co-
ordinate along the curve of é&-section, then
direction cosines of the normal is

ay b‘x)

<E)s’ T ds

/

and so v or v, is

oz 0z
v,= {55 — ); (1.4)

Because §z/6§ means partial differential with
respect to £ of mapping function, », may be
calculated if mapping function of each sec-
tion is given by this formula. If normal
velocity is given, it is easy to look for velo-
city potential and it is obtained by setting
a source of

@<e>=gvv<e>ds (1-5)

on the origin of {-plane and sink-and source-

distribution

ds Q> (1-6)

q(b’)=2<vrgb‘-—”2;

on the unit circle. The complex potential

fis

f= 1+ fi=(dr+do)+i(d1+ ), a-7
fi=srlogt, (1-8)

1 34 -
and fz_-:—?;go (0" log (C—e®)do’ (1.9)

where f; is regular at infinity. From the
above formula, tangential component of velo-
city isH®

_ O Oy {4_0_ !]Ji} )
s T T oy =R1%s o =eil (1-10)

On the other hand, as this term is equal to
normal derivative of a function ¢s, by putting
ds

1'0)=20"2>,

0 (1-11)

/2 is also represeted as the following by dis-
tributing circulation.

L T o ey (112)
fi= 57 Sol((?)log(c e?do’  (1-12)

Now we think about the projection of stream
lines onto body plan. Let the stream line
element between two sections distant by ¢&
be 4S, then from Fig. 3,

P
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Fig., 3 Velocity and Stream Line
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()S _{77

% = dz (1-13)

This is not always convenient for calculation.
As every point on the frame line may be
represented one-to-one by argument ¢ on
C-plane, it is convenient, as the case may
be, to represent these stream lines with
parameter 0. From the figure variance of 0
may be calculated as the following.

S dS a0

1 9z 9z)
6 do ot T

~als ) 019

At last we think about the kinetic energy
T of this system.

T:—”—gg{/i‘/’—>2+<a‘/’>d:cdy T+ T

2V \az) T3
(1-15)
where
Tl-_—.-zg ¢a¢ds (1-16)
R
and 72...——58 ¢a"5 as. (@)

R is infinitely large circle whose radius is
R and C is the frame line curve. By refer-
ing to Egs. (1-7), (1-8) and (1.9),

Ti= %S ¢1a¢’Rd0 —&Qﬂog]? (1-18)

S P 3502 ds.

If R becomes infinite, T also becomes infinite
and this is meaningless. But if a body is
closed, generally

and Ti=-— (1-19)

S::Q(S)d5=0 (1.20)

and kinetic energy is finite. This is one of

‘the contradictions due to the assumption of

slender body. As the term of 7% contains
no factors representing frame line configura-
tion and depends only on the longitudinal
variance of displacement, we may well leave
it out of consideration on discussing the

secondary fiow. Therefore 7T: is a charac-
teristic quantity of the secondary flow, as
this is explicit from Eq. (1-19),

Similarly pressure distribution is distin-
guished between its longitudinal variance and
that of secondary flow. Let &component of
velocity be 1+w: and let pressure at infinity
be zero then Bernoulli’s theorem is

Zp=1=(Urog i+

=—20:—(Vi+0v240?).

Therefore, putting

p=pi+p:, -21)
253— = — 20— 2= 20, (1-22)

and
2ps (1-23)

S (0040
P

and on the assumption of the theory v is

to be function of £ only and p. is thought to
represent the variance of the pressure of the
secondary flow on the frame line. Such a
pressure distribution gives rise to torsion of
stream lines. Because in this case the direc-
tion of stream lines nearly coincides with
&-axis, principal normal and binormal may
be supposed to lie on the xy-plane by the

assumption®, Then principal curveture 1/«
is

1 _gn_ 1 3 2_,~

£k q 29 ond ¢)= (1-24)

where ¢ is absolute value of velocity and the
suffix means partial differential with respect
to its direction. Torsion 1/2 is

(1-25)

——~=1——q2 and <"2”j‘)‘> =-—2(](]e¢.
P/

‘Then the assumption of slender body would

allow p in Egs. (1-24) and (1-25) to be taken

Jd

.
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Fig. 4 Normal and Tangent /

as p: in Eq. (1-23). If v vanishes, then from
Fig. 4 ¢q. vanishes, from Eq. (1-25) torsion
vanishes, and »n coincides with v. In other
words the principal normal coinsides obvi-
ously with the normal of the body and the
stream lines become approximately geodesic®,

2. Lewis Frame Ship®

Secondary flow can be calculated by the
formulae in the previous section if a function
mapping the frameline to a unit circle is found.
It is, however, not always easy to find a
mapping function suited for actual ship forms.
Meanwhile, by making use of so-called Lewis
form, frame lines similar to the practical
ship form are obtained as Jinnaka calculated
and the calculation becomes very simple.
We take our stand on optimal frame line
configuration if possible rather than on find-
ing actual flow by calculation, therefore
simpler formula makes the outlook more
plain. Then we shall call the whole ship
form of which frame line curve is represent-
ed by Lewis form Lewis frame ship and
restrict our thought on such ship forms.
So the mapping function is

z=cc+£+~lz—

(T &1

Hence half breadth g, draft ¢ sectional area
(of double model) Am=x=y and section coefhi-
cent Cn are

B=c+a+b, ]

r=c—a+b,

r——-%Am:c‘x——ag-—Sb“" 2-2)
_
and Cm-—— 4ﬁ?.'

To approximate the actual ship forms by
Lewis frame ships, g and ¢ may be chosen
to coincide with those of the actual ships
respectively. If they are given as functions
of &, then a, b and ¢ are obtained by the above .
formulae. (In the case when they don’t give
the actual frame line curves, we don’t, of
cource, persue the problem any further) If
a, b and ¢ are prescribed as functions of £ as
the above, firstly from Eq. (1-4) the follow-
ing are calculated.

ds oz dz
””do_ {66 . Z.dgIr--C—}—AcosZO—chosM,
(2-3)
C=cc'—aa’—3b0"
A=ca’ —ac'—ab’—3a’b (2-4)

B=ab'-3c’b

where the prime means differential with

respect to & Since these are also written

from Eq. (2-2) as
‘B,=C,+a,+b,,
lecl_al+bl ,

and 7' =2(cc’—aa’—3bb")

(2-5)

they are followed by

7,/

T2

7

T,
A= 7 (c—a—3b)— 9 (c+a—3b),

4

_8 el _Ir
and B~ 5 (c—a—3D)+ 5 (c+a—3b) 2
(2-6)

Especially in =0 or in the case of circular
and elliptic sections, paying regard to Eq.
(2-2) too,
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!

c="-,
A= (pr—pc), @D
and B=0.
When draft ¢=const, or =0,
c:—fé—,
a=Ec~a-3), (@-8)
and B=A-C.
Besides

ds\? 2
<(70~> =ct+a?+9b*—2a(c—3b) cos 20

—Gbc cos 40 2-9)

and especially

ds
dO o=0-—c——a—~3b
(2-10)
ds
-C.Zﬁ 6=n/2_c+a—3b

Now substitute Eq. (2-3) in Eq. (1-5) and

Q=2xC=ry’ (2-11)

and fi in Eq. (1:8) is obtained easily. More-
over substitute Eq. (2:3) in Eq. (1-6) and

q(0)=2A cos 20+2B cos 40 (2-12)

and substitute Eq. (2-3) in Eq. (1:9), then

A B '
gt O
Therefore from Eq. (1-10) tangential com-
ponent of wvelocity is

ds

a0 = Asin 20+ Bsin40

v; (2-14)

"Then main component v, of secondary flow

is determined only by A and B independently
of C. If potential is represented by circula-
tion distribtion in Eq. (1-12), substitution of
the above equation in (1-11) indicates

I'(0)=2Asin20+2Bsind0  (2-15)

Now if stream lines are calculated by Eq.
(1-13), then

35 _of [di_(CrAduLBy
s do/ dv c_ag‘zw._3beuo)

e’ (2-16)
and this being represented by parameter- in
Eq. (1-14) as

0 _(A*sin20+ B*sin40) <%.’j.> (2-17)

A*=2ac’ +3a’d),
(2-18)
and B*=06bc’

and thinking graphically, the following for-
mula will be convinient for calculation.

v, Asin20+Bsindd
v,  C+Acos20+Bcos4d

(2-19)

By substitution of Egs. (2-3) and (2-14) in
Eq. (1-23), p» of secondary flow is

Ly a5

4 2A(C+ B) cos 20+2CB cos 40}(%%)2
(2-20)

Substitution of Eq. (2-13) in Eq. (1-19) indi-
cates that kinetic energy 7T of secondary
flow is
_F 2, B .
T254p<A+ 2> (2-21)
Although each value can be calculated easily
as the above, yet the problem is what these
values mean hydrodynamically and what
values are optimum. In the following we
shall consider these section by section.

3. Trefftz Plane®

Firstly let’s consider bilge vortex of the
recent topics. Slender body theory has been
developed from R.T. Jones’ theory of small
aspect wing and it is assumed in this theory
that, in the case of slénder wing, velocity

o

~
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induced by bound vortices perpendicular to
main fow is negligible. As the result, vortex
distribution of which axis 1s parallel 1o main
flow) of each section of the wing is brought
backwards as it is. That is, the vortex
distribution of each section forms Trefftz
plane. In our case, potential of secondary
flow may be represented by circulation as
Eq. (1-12), and it means that the ship is
considered as a cylindrical wing. Induced
velocity is determined by the boundary con-
dition as Fig. 5 with consideration of velocity

R
()//5”3\\L)

QN ol
N\ e
N ‘7/\% M

D cracurarron , ()
R

Fig. 5 Source and Circulation at Fore Body
seen forewards from aft

~

by the source representing displacement
effect, and vortex distribution is given by
Egs. (1-10) and (1-11). Kinetic energy of
Trefftz plane is clearly equal to 73%. In the
case of Lewis frame line ship the vortex
distribution is given by Egs. (2-15) and T
by Eq. (2-29). Distributions of 7@ of actual
ships are shown in Fig. 17. Since T} at any
section means work done by the ship from
stem to the section, force of é&-direction on
the section is (all forces in the xy-plane may
well be neglected for they cancell out each
other.) :

dT,
= (3-1)
Accordingly it turns out to be thrust force
- in the fore body, drag force in the aft body,

concentrated drag force at the fore end peak
and concentrated thrust force at the aft end
peak. It Trefftz plane, however, is once
settled, vorticity is to be thought brought
backwards invariably, and if so, it is not
supposed reasonable that Trefftz plane is
independent on other sections. Hence it is
to be solved by integral-equation®, but in
this case it would become very complex in
comparison with the plane wings and, even
if it is solved, it should be difficult to grasp
how it relates to the practical.

Through Jones’ theory induced resistance
is simply to be given as follows®®;

Dj=Mazx. T: (3-2)

Although this formula is known to give a
good appoximation in the case of wings with
very small aspect ratio, yet the accuracy is
not predicted for our problem because the
conditions are very much different. If there
is, however, resistance induced by bilge
vortex,” 73 is thought from the above con-
sideration to turn out a criterion of its
magnitude, and in order to compare with
residual resistance let’s no-dimensionalize it.

T:/2
cm=~;(~—-~—~2/ ) - (3.3)
£ 03172
g7V
where p is the volume of displacement of
the ordinary ship and not of the double-
model. For instance for the elliptical section,
substitute Eq. (2-7) in Eq. (2-22), and we get

25 T, o i’_i)g ™
pn_8@m<ﬁ : (3-4)
but clearly, from the above formula, 7%
become small, if both g’ and ¢’ are positive,
and resistance would be small. Especially

if (8/r)’=0, then
Ty=0 . (3-5)

That is, when breadth-draft-ratio is constant,
resistance turns out to be minimum. This
corresponds well to the fact that resistance
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of ships, of which keel hangs down like
Tnuid, is small®

On the other hand, since 7T: is kinetic
energy of secondary flow, it is anyhow
favourable to be small, and it may be proved
T, to vanish as minimum. The condition
when it vanishes is from Eq. (2:29)

A=B=0 (3-6)

and substitution of Eq. (2-4) gives the follow-
ing -conditions,

cb’ =3bc’ }

(c—3b)a’ =a(c’+b")
If they can be solved under the given initial
condition regarded as the simultaneous par-
tial differential equations with respect to §,
then 7: vanishes along whole ship length.
This solution, being solved easily, is

(37

where ¢, a0 and b, are initial values and 2
is an arbitrary parameter. Example of Eq.
(3-5) is the case b=0, and further Fig. 6
shows some examples of ship forms like the
practical ship forms. Such ship forms have
no twist of stream lines through Egs.
(3-6) to (2-14). That is, the stream lines be-

- come approximately geodesic. Since geodesic

curve is the shortest path between two
points, a ship form is obtained, which corres-
ponds to the idea of Maier form (i. e. a ship
form of which stream lines arrive at midship
along the shortest path). In the following,
we call these ship forms as A.G.S. Approxi-
mate Geodesic Stream Line Ship Form).
Since 1 in Eq. (3-8) is an arbitrary function
of &, distribution of displacement is, too,
arbitrary. In other words, the nature is
invariable with elongation in longitudinal
coordinate.

4. Limiting Stream Line

Stream lines considered above is in fact
regarded as those of the exterior to the
boundery layer, but generally inside the boun-
dary layer cross flow crossing to them is
induced, and especially stream line along

C=Coz,
-2,
a=ald——rp ", 3.8
(12 58
Cy
and b=b023
[ 2 . 1
1.0 | 1.5000 |
0.8 1.2020 |

0.6 0.9009

0.4 0. 6000

0.2 0.3000 |
a =0

Fig. 6 A.G.S. Form (1)

TN
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[ b

1.0 |10.7500 | 0.2500

0.8 | 0.6000 | 0.1280

0.6 | 0.4500 | 0.0540

0.4 | 0.3000 | 0.0160

0.2 | 0.1500 | 0.0020
a=0

/

Fig. 6 A.G.S. Form (2)
X
A c a b

1.0 | 1.5 | 0.2500 | -0.250
0.8 | 1.2 | 0.2273 |-0.128
0.6 | 0.9 | 0.1907 [-0.054
0.4 | 0.6 | 0.1389 [-0,016
0.2 | 0.3 | 0.0735 |~0,00C2

A1 e
1,0 1,2500 0.4000

0.8 { 1.0000 0,2600 0,1280
0.6 0.7500 | 0.,1532 | 0.0540
0.4 0,5000 0,088% 0.0160
0.2 - 0.2500°} 0.0410 0.0020

Fig. 6 A,G.S. Form (4)
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QUTSIDE OF
BOUNDARY TAYER

STREAM LINE

A s

Fig. 7 Limiting Stream Line

- the ship surface is called limiting stream

line. As shown in Fig. 7, let’s take & along
stream line, » normal to it, ¢-axis upwards
vertically, # and v components of velocity,
7 radius of curvature of the stream line at
the points considered and g an angle between
stream line outside the boundary layer and
limiting stream line. Curvature of the sur-
face and pressure gradient are to be small
in direction of main flow. Then since cen-
trifugal force of a particle of fluid is equiva-
lent to the pressure gradient in the exterior
of boundary layer,

e {4.1)

where U is velocity outside the boundary
layer. It is to be thought that velocity on
the surface of the body vanishes and that
all inertia forces vanish, therefore pressure
gradient of the above formula must be
equivalent to the viscous force. That is

1 9p v

S *2)

{=0

where v is kinetic viscosity. Let there be
the following representation of velocity dis-
tribution!?®,

v:Utanﬁ(lj— ¢ >f<—,§:> 4-3)

62

AY

w=U7(5) (4-4)

where & is thickness of boundary layer.
Then

d*u

du| _U v .
c=0_-tar1 00 | 3 tan 8/"(0). (4-5)

Substitute this in Eq. (4-2) and solve with
respect to tang, and

tan B="rr 00y \p ) 207f"(0)

is obtained. The assumption on which the

above formula is deduced seems too rough.

actually, but several results are. given by
them. The larger is the pressure gradient
normal to the stream line or the larger is
curveture of the stream line, the larger is B.
In this case stream lines in the boundary
layer curve in the direction of the center of
curvature of main flow. Since B becomes
very large rapidly as @ enlarges, near the
stern gets much larger generally than the
fore body. Also with the curve of velocity
distribution of the boundary layer in the
direction of main flow g will vary greatly.
It is not always certain that, by the grawth
of cross flow in the boundary layer, viscous
resistance increases rather than without it.
Because of the assumption of the present
three-dimensional boundary layer theory velo-
city distribution in the direction of main flow
is determined independently on the cross flow
(p. 468 of (9)). Growth of the cross flow
means that of vortex of which axis is parallel
to main flow, therefore it flows out of the
boundary layer when it grows to a certain
size. It is near the bilge that there is such
a risk. Because the limiting stream lines,
gathering from ship side and bottom, come
to cross together at an acute angle, such
deviation of vortex of three-dimensional
separation of boundary layer is thought to
be promoted. For the above reason, estab-
lishment of quantitative limits within which
g is harmless depends on future investiga-
tion, but at least it is certainly desirable
that it is small as possible and does not vary
discontinuously. From Eq. (4-6) 8 vanishes

J

.
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as pressure gradient vanishes, and this
means there is no twist of stream line ap-
proximately. That is, if stream line becomes
geodesic, there is no cross flow (This is
Squire’s theorem!®. Accordingly A.G.S.
form derived in the previous section turns
out also in these means to be a ship form
which hardly cause bilge vortex” and of
which stream lines outside of boundary layer
coincide nearly with limiting stream lines.
Accordingly viscous resistance of A/G.S. is
considered to agree almost with calculation
of boundary layer theory, and expected to
be equal to that of the bodies of revolution
with almost same sectional area.?

5. U shape-Frame and V shape-Frame

Although A.G.S. form of which secondary -

flow is minimum is thought to be suitable
as the the above to keep viscous resistance
small, yet on the other hand it seems disadvan-
tageous in view of wave-making resistance,
interference with propeller and course
stability, and one of the advantages applied
to the practical ship forms is found merely
in Maier ship forms. Whether U-shape or
V-shape is a criterion of distinction of the
practical ship forms and it is said that U-
frame is advantageous with respect to wave-
making resistance and propulsive efficiency,

while V-frame is advantageous in point of

view of viscous resistance!®,

In this section let’s study on the relation
between the characteristics of secondary flow
and geometrical feature of the frame line
about the Lewis frame ship form. We take
the keel line horizontal or '=0 as the usage
of practical ship forms and let’s take the
section of parallel body be nearly rectangular.
On the condition of #'=0, from Eqs. (2-8)
and (2-2)

C:—Zz‘-‘ = %(C:nﬁf + Cmﬁ"[') y

A=), e

and B=A-C.

For the distinction between U-frame and V-
frame is rather vague, here we would once
call a frame line whose section coefficient is
larger than ellipse as U-frame, and smaller as
V-frame. Therefore, because in the case of
ellipse b=0 in Lewis form section, above
distinction means the followings,

Cmg—z—, b>0, V-frame

(5-2)

Cax", b0, U-frame
The quantities of secondary flow are re-
presented by those of the tangential com-
ponent of velocity or 7. Substitute B=A~C .
of Egs. (5-1) in Eqgs. (2-14) and (2-21), and

v,-ﬁ%:{A(l-{-Z cos 20)—2C cos 20} sin 29, (5-3)
and
2o m(ly, 3 __2)2} .
: 2-2130+2<A 2 e

C is determined by the first of Egs. (5-1)
if the sectional area curve is given, there-
fore only A depends on frame line configura-
tion. A depends, however, on only b from
the second of Egs. (5:-1) once g’ is given,
and, from the classification of Egs. (5-2), A
of V-frame turns out small compdring with
that of U-frame. This is, however, the
matter of the case when 7’ and g’ are given,
and, if they are arbitrary, whether U-frame
or V-frame has larger secondary flow is not
determined.

That 1is, quantities of the secondary flow
depend on displacement distribution in longi-
tudinal direction and shapes of water lines,
Consequently for instance in the case of
constant y’, g’ of U-frame ship needs to be
taken less than V-frame ship in order that
A has the same value. It does not always,
however, affect to the quantity of T3.
As a result of Eq. (5-4), clearly T: is
minimum when A=C/3. Substitution of this
condition in Eq. (2-4) and ’=0 indicates
that ordinary differential equations with
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REP.NO. ¢ a b
1 0.5484 |-0.4916 |-0.04
2 0.5943 |-0.4857 |-0.08
3 0.6384 [-0.4816 |-0.12
4 0.6812 1-0.4788 |-0.16
5 0.7129 :=0.1471 | 0.14
R NERL NEAE
7 0.8641 1-0,0559 | 0.08

8 1.0000 | © 0
9 1.1112 | 0.0312 |-0.08
10 1.2108 | 0.0508 |-0.16

Fig. 8 Ship Form for A=(C/3

respect to  are given as follows;

_£
=%,

a’'(3c—2a—6b)=(c+3b)’,

A 2A=-8,

(5-5)
and a’'=0+c .

That is, in the case of the ship form which
has the multipliers containing the above
equations, 73 is minimum at each section and

’

2 _Ez_i_Ly _Q .
T2—60—6< for A=% (5:6)

o 2

Solutions of Egs. (5-5) (cf. Appendix) are
shown in Fig. 8 The right hand side of
this figure shows typical so-called V-frame
ship form and the left bulbous bow. In this
ship form tangential velocity is, by substitu-
tion A=C/3 in Eq. (5-3),

ds

as _ 74 ; .
Ve =6 (1—4cos20)sin 20 (5-7)
and by substitution of it in Eq. (2-3)
L ds 7
=6 (3+cos20—2cos40), (5-8)
' consequently
V. sin20—2sin40 (5.9)

v,  3+cos20—2cosdf

These are shown roughly in Fig. 8 by arrows.
In order to compare with this let’s consider
U-frame ship form of which sectional area
coefficient is nearly constant. For this pur-
pose, take B=0 in Eq. (5-1), and

C=A="- (5-10)
therefore
2 T .,
pTz——2C , (5-11)
ds .
V- 0T sin ¢ cos ¥
, (5-12)
v ds 7costl)
do !
Ve
or ——=tand. (5-13)

¥

Accordingly directions of the stream lines
at 6 as shown in Fig. 9, for example, incline
by 6 more from the normal. Then stream
lines as shown in the figure run first out-

wards to the bilge and further go around to

the bottom. The comparison to Fig. 8 in
Jinnaka’s paper shows that ship forms of
which sectional area coefficient are nearly
constant along longitudinal direction have
the common features in ‘this aspect. Mean-

o

2N
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REF.NO. c a b
’ 1,2750 | 06,1250 | -0.15
1.1836 | 0.0636 | ~0.12
1.0340 [-0.0460 | -0.08
0.8207 {-0.2193 | -0.04
0.6514 {-0.3686 | -0.02
0.5170 |{-0.4930 | -0.0"

Hoalnla jwln |~

Fig. 9 Ship Form for A=C

while, as explained in section 3, when cur-
vatures of the stream lines are large as like
as these, the limiting stream lines are thought
to curve more than these and it seems dis-
advantageous with respect to resistance. In
this meaning the stream lines of the ship
form in Fig. 8 turn out not so unnaturally
as compared with those in Fig. 9. As shown
by this example disadvantage of so-called
U-frame ship is thought to be caused not

by values of sectional area coefficient but by

maintaining it almost constant. Therefore
definition of (5-2) is to be not so suitable.
To the contrary, advantage of V-frame ship
is thought due to the small secondary flow
of these kinds of ship forms of which rate
of decrease of sectional area is designed as
like as Fig. 8 to be larger than the rate of
increase of breadth as going to the peaks,
As the above, the frame line configuration
of itself does not determine secondary flow
but a rate of its longitudinal variation deter-
mines it. Let us see some examples.
i) Case of A=0 and B=—-C

On the above condition the relation between
the coefficients is through Egs. (2-8)

c=a+3b, (5-14)

and by adding the condition that ¢ is constant
the coefficents are determined. In this case

y
2 7 :
ity SRR .
; Ty= 4C (5-15)
and
Ve —sindg Fid
. = 1= cos 40 —tan<20—— 2> , (5-16)

then as shown in Fig. 10 these are V-frame.
Similarly to the ship form in Fig. 9, v.
changes sign at the half way from bottom
to water surface and v./v, does not become
so large at the bottom. '

il) Case of A=—2B or A=—§-C
The relation between the coefficients is
b'(3c—a—3b)+c'(c—a—9b)=0 (5-17)
and

v, 2sin20—sin4¢

v, 3+2cos20—cosdo ’ (5-18)
2. T
pn_4c. (5-19)

This ship form is deduced so that v. vanishes
at 0:==0°, and resembles!® closely that deduced
by the same thought of slender thin body
theory.® As shown in Fig. 11, this is V-frame
ship form similar to Fig. 8.

iii) Case of A=2B or A=2C
The relation between the coefficients is
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g e
1.5 | 1.00
1.2 0.85
1.0 | 0.75
0.8 | 0.65
i Fig. 10 Ship Form for A=0
REF.NO c a b

.7258 | -0.4242 1 -0.15
.6615 | =0.4385 | -0.10
.5884 | -0.4616 | =0.05
L6160 1 -0.3440 | 0.03
.7607 { =0.1793 | 0.06
.8586 | ~0.1014 | 0.04
.0000 0 0
.1306 | 0.0806 | -0.05
.2359 | 0.1359{ -0.10
L3284 0,1764 | ~0.15

i
i

il +]OOIOIOIO]|O

Slolw|afo|unleiw]rn]—-

Y .

Fig. 11 Ship Form for A=C/3

V(c+a+3b)=c'(c—a-+3b) (5-20)

and
Ve
o =tan 2, (5-21)
2 37 -,
*;Tz—~ 5 O (5-22)

This ship form is designed as v.=0 at ¢=n/2
or on the keel line!®,
iv) Case of A=B, C=0

b'(a+3b)=(c—a)’ (5-23)

P —tan3p (5-24)

v

2537
S Ti="C (5-25)

v.=0 at 0=60° (near by the bilge) in this
ship form and as shown in Fig. 12 it is
similar to the previous example. Since T3
value of this example is, together with pre-
vious example much larger than that of V-
frame ship form, this case is not favourable
when ¢’ or g’ is large.

Although by prescribing characters of
secondary flow and giving initial conditions
frame line configuration is determined, in the
case of constant depth, the frames near the
fore and aft ends of ships, as like as the right
hand side figures of Fig. 8 and 10 of V-frame

A
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REP.NO. [ [ b
-0.1972 ; 0.08

+5790 | -0.4210 0
.5598 | -0.3802 | 0.06
REP. NO. 1~4 :A=2C

REP. NO. 5~8=z ¢£=0 /

2 0.6815 [ -0.3185 | ©
3 0.6660 | -0,4140 | ~0.08
4 0.6812 | -0.4788 | -0.16
5 0.6812 | ~0.4768 | -0.16
€ 0.6220 | -0.4580 | -0.08
7 0

8 0

Fig. 12 Ship Form for A=2C and C=0

ship form favourable in the sense of the
studies in the previous sections can not be
connected by bulbous bow as like as the left
hand side figure of Fig. 8 directly. For the
sake of it, one ideas is to adopt Maier form
or cruiser stern by introducing the idea of
A.G.S. form giving up to keep the condition
of constant depth and the other is to adopt
bulbous bow by inserting the connecting part
like as Fig. 12!,

6. Slender Thin Body Theory

What will occur if the consideration in the
previous sections are adopted to more com-
plicated ship form than Lewis form? Firstly
in general through the form of two-dimen-
sional potential (1.9) in reference to Egs.
(1.3) and (1-6), an expansion

Wi T e do T = (6-1)

is possible. These coefficients are defined
by the integrals like

(6-2)

)%

and Aﬁnz—_g cos 2n8 ds

T e 08

By extending Eq. (2-21), energy T: of second-
ary flow is given by

x & Al
Ti=20 3 (6-3)

o1 20
Accordingly if mapping function is given,
these quantities can be calculated by the
same way as that of section 2. Let’s consider
minimum value problem of 73 with the back-
ground of studies in section 3. In the sim-
plest case when ¢’ or slope of sectional area
curve is only given, the solutions are clearly

Am=0 for n>1
and  Min. T3=0

(6-4)

‘and this is A.G.S. form named before.

Thinking of this through Eq. (6-1) and since

Jgv 7 do
ve= o 2 ds’ (6-5)
by making use of this formula A.G.S. form
is drawn easily by the method of successive
approximation if ds/d0 is known. Namely,
it is certain generally that A.G.S. form
which starts from arbitrary frame line con-
figuration exists. Further let a restriction
of constant draft set like the case of previous
section. Now in order to clarify the relation
to the practical ship form let’s adopt slender
ship theory®®, That is, let half breadth
curve of the ship form be 5(§, ¥) and approxi-

mate as follows;
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_, e y) .
e e 1 5
(6-6)
U ds ) ;
s=y=sind, and a0 =cosl, ; " 44
. | 52
and it becomes intuitively easy to consider i | LI
variation of half breadth in é&-direction be- :{"/ Eg
cause on any water line # is constant. [ i
Because, even after this approximate estima- ;' 2
tion, above formulae are invariable essential- |
ly, it is easy to rewrite them in accurate ~ | = NOZTSw ot 5
forms. On this approximation Eq. (6-1)is ~  } 777
written as  DRAPT
s
s 0.5 0

a1
% = cost n}_, Az oS 200 6-7)

and Eq. (6:5)

2

7/

- 7
0t 2cos?

(6-8)

then this is a law of variation of water lines
of A.G.S. form. Since the condition of
constant depth is, in other words, that
should vanish when ¢=z/2, from Eq. (6-7)

ST (~ 1P Am=0 6-9)
n=0

Take N coefficients A; to A, and solve the
minimum value problem of 7% under the
condition of above formula by the method
of indeterminate coefficients, and

2nA,
V(3 o
Am—( 1) N(N‘f"l)
Iy (6-10)
[ FON__ A
T2"< 2 )N(N+l)

are obtained. The case when N=2 cores-
ponds to Lewis form and above formulae
are the same as Eqgs. (5-5) and (5-6). As N
is taken larger, A and T tend to zero and
clearly they tend to the solution (6-4) as the
limit. That is, generally if we increase the
number of coefficients and look for the frame
line configuration which minimumizes 7 we
may obtain the A.G.S. form as the limit.

Fig. 13 Optimum Variation of Half Breadth

About A.G.S. form, however, draft can not
be constant, therefore, as N increses, un-
eveness of frame line becomes conspicious.
Fig. 13 is drawn in order to show these
circumstances. The notations are as the
followings and the figure illustrates the solu-
tions of Eq. (6-10)

, . \
Jo= cosd ’

—— 1— 2 ?‘( 1y cos2 0}
’“N“cosa NN+1) 5 cosen

(6-11)

In thin ship theory minimum 7% is obtained
by adding to or subtracting from the given
initial frame line and especially f; corres-
ponds to Lewis form. To do more correctly,
substitute this into Eq. (6-1) and solve it as
a partial differential equation with respect
to dv/o¢ and then the ship form can be drawn
as a previous section.

7. Practical Ship Form

As shown in section 5, if the characters
of secondary flow are appointed, there appear
fairly distinct features of the ship form and
exist many groups of curves similar to the
practical ship form. Then in this section
let’s take up the typical e}nd practical ship
form and, from a point of view as metioned

J
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above, examine what features they have.
Although the method of making the practical
ship forms approximated by Lewis form
seems to be a very rough treatment as shown
in the later figure, yet from now we will
continue the discussion considering the

equivalent Lewis form ship of which breadth,
Be-

draft and sectional area are the same.

cause more accurate approximation makes

calculation complicate exceptionally and, by
the practical examination in part, it does
not prove to have so effect as to deny the
results. Tirstly, as the general standard of
practical ship form, Taylor’s parent ship
form is shown by real lines of Fig. 14.
Dotted lines, showing the equivalent Lewis

Fig. 14 Body Plan of Taylor’s Parent Model.

TALLR 1
MUDHL: TAYIORY S DOanNT POgM
i L/B B/d Cy i <, ; R
g I V507 i 553 [ 516 33‘298|d€
83. STATION Yv | Pl | ele A/t o/r_ 1C{tAs) [ AL/ T5(L/2) [C o7 PinC,y

38 1/2 L0829 1 L2700 | L5116 [-.3850] .1234] — — —— IR
37 3/4 L1430 | 3768 | L5474 |~.3116| L1410 1,75 .83 -.52 .22 W16
36 1 22154 | L4668 | L5900 |-.2666 | L1424 154 76 | -.18 .23 .21
35 11/4 12948 | L5544 1 L6359 [-.2028| L1413 1,68 W71 -,97 .25 225
34 1 1/2 JIST1 ) L6224 | L6965 1~ 18381 ,1297] t.80 $13 FrL07 .29 .28
32 2. S5723 1 L1776 | L7853 {11tz L1035 1,96 .80  ki1.16 .34 .33
2 2 1/2 1745 | 9080 5584 |-.0470 | .0€461 2,02 91 1.1 .38 .56
28 3 «9722 [ 1.0212 | ,9869 | .0106] .0227] 1.87 .51 -.96 .34 31
26 3 1/2 [1.1436 11,1052 [1,0712 | .0526 | -.0188] 1.53 .15 -.78 .23 .20
24 4 1,2777 | 1.1604 | 1.1375 | 0802 -,0573 ] 1.08 .52 -.56 .1 .10
22 4 1/2 [1,2615 |1,1880 |1.180! L0340 | -,0861] ,62 .24 -.38 .03 .03
20 5 1.2995 | 1.2000 |1,1997 | .1000| -.0997| .16 .01 -.15 .00 +00
18 5172 [1.5877 [1.1856 [1.1948 | .2328 | -.1020 -,35 -.30 .05 .02 .0t
16 6 1.3289 [1,1568 |1.1652 | .G784 | -, 0868 -,84 -.55 ,29 .09 .06
14 6 1/2 | 1.2163 | 1,1016 |1.1066 | .L508 | ~.0578!-1.40 | =.90 .50 .25 A7
12 7 1.0532 [1.0092-{1.C270 | 0246 | -.0224 i-t.81  |-1.18 .63 .42 .28
10 71/2 8602 | .8749°1 9206 [-.0€26 | ,0078{-2.02 |-1.42 .60 .57 .36
8 8 6542 1 L7020 | .82:8 |~.14%0 ] ,02724-2.0¢ |-1.68 .36 .75 .36
6 81/2 4565 5044 1214 | -.2468 .07181-1.86 -1,71 W15 .76 .30
5 8 3/¢ 3506 | ,4048 1 ,6720-1-,2946 ] L03141-1.71  [-1.66 .05 .72 .25
4 9 W2847 | L2144 | L6253 1.,2428] ,0219(-1.54 |-1.65 -1 . .21
3 9 1/4 | .2106 | .2256 | ,A003 |-.2872] .0120|-1.41 |-1.64 | .23 .M 17
2 9 1/2 V444 1 ,1428° 1 L5728 | -.4286| -.0014|-1,22 |-1.59 | -,37 .68 .13
1 9 3/4 20310 | .Of84 | L5562 1-.4558( ~.0221] ~.88  |-1.41 ~.53 .56 .07
PP, | 2P0 | L0619 L0276 | 5497 |-.4962] <0359 e | = | — | e —
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form, coincide comparatively with practical
frame line as shown in the figure. Calculated
values of C, A and B are shown in Table 1
and at the aft body they prove to correspond
to the case when A=C/3 or the case of Fig.
8 of minimum 73 and at the fore body to
the case when A=C or the case of Fig. 9.
In the Table, Cos is defined by Eq. (3-3)
and Min. Cp; shows the values corresponding

to Eq. (5-6). Secondly the example of high
speed cargo ships, a parent ship form of
45th committee of Japan Ship Research As-
sociation,'® is shown in Fig. 15 and Table 2.
Although the equivalent Lewis form differs
considerably from it in this case, at the aft
body still A=C/3 and at the fore body which
may be so-called semi-Maier form A=2/3C
and it is a form whose v. is small near the

T

t
1
1
i
1
+
!

Fig. 15 Body Plan of SR 45 M. S. 1382

TABLE 2
MODSI, : SR45 _ M.3. 1382
/B |B/a c, c, & | WL |yec.b.
7 2.4 . 625 L642 974 .31 a2

S0.51. | Wz | Al | eo/v | sl b/t [C(L/A3) [A(L/) [B(LA) | Coy [Min.c,
AP, | ,0179 | 1908 | .4746 |-.4046 | .1208 | — |1.28 — L3 X0

1/4 L0476 | .3180 | .4948 [-.3410 | 1642 | 2.37 .88 -1.49 .61 .61

1/2 L1801 | (4464 | ,5712 {-.2768 | .1520 | 2.55 .99 -1.56 LT .70

3/4 L3110 | .5700 | L6450 }-.2150 | .1400 | 2.68 [1.06 |-1.62 .79 .18

1 L4479 | L6864 | L7199 |-.1568 | 1233 | 2,76 [1.13  [-1.63 | .84 .82

1 1/2 27233 | (8856 | .8633 |-.0572 | .0795 | 2.66 |1.19 | -1.47 .81 .16

L9748 [1.0332 | ,9887 | .0166 | .0279 | 2.30 |1.08 |-1.22 .62 .57

21/2 [1.1831 {1.,1292 {1.0906 | .0646 |{-.0260 | 1.79 | .B4 |- .95 .38 .35

3 1.3349 |1.1856 11,1659 | .0928 {~.0731 | 1.21 45 |- .76 A6 .16

4 1.4659 [1,2000 {1.2382 ] .1000 [-.1282 W30 | .02 [-..28 .01 .01

5  11.4882 |1,2000 {1.2520 | .1000 |-.1520 |.-.02 0 .02 .00 .00

6 1.4450 {1.1928 {1.2269 | .09€4 |-.1305 | -.54 |-.28 W6 ] .05 .0%

7 1.2382 |1.0824 11.1225 | .0412 |-.0813 |-1.63 [1.26 .37 .54 .29

7 4/2 [1.0477 | .9648 |[1.0265 [-.0176 |-.0441 |-2.20 }1.66 .54 |..94 52

.B066 | .8004 | ,9038 |-.0998 |-.0036 |-2.55 [-1.89 66 11,23 .70

8 1/2 | ,5491 | ,5976 | 7694 |-.2012 | .0294 |-2.49 [-1.28 WU 11,21 .61
9 L3185 | .3804 | .648B0 }-.3098 | .0422 |-2.09 [-1.76 .2 1.02 W4T .

9 1/4 L2203 1 ,2772 | .5968 {-.3614 | ,0418 |~-1.88 [-1.67 .21 .91 .28

9 1/2 L1310 | .1800 | .551% }-.4100 | .0289 |-1.68 |-1.58 .10 .B1 .30

9 3/4 .0521 | .0BE8 | ,5125 [-.4556 | .0319 | =1.45 [~1.56 - 11 .79 .23

¥.P, 0 0 .5000 |-.5000} © — 11,73 — _— ] —
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i water surface as shown through Eq. (5-18). and then it may be said that general feature
o For the example of full ship forms, a of U-frame is A=C. Accordingly if equi-¢
. parent ship form of U-frame of 41th com- curve is given, stream lines can be drawn
mittee of Japan Ship Research Association,! by Eq. (5-13). The stream lines given by
is shown in Fig. 16 and Table 3. Also in such ways are, however, not thought to be
this case A=C/3 at the aft body and this desirable from the study of section 3 and 4.
law seems to be applicable generally to the To consider this further, we compare
§ aft bodies of practical ships. At the fore ' Max{Cs;} and Max{Min. Cps} defined by Eq.
body Ax=C similarly to Taylor’s parent form  (3-3) of these ships with residual resistance

Fig. 16 Body Plan of SR41 M. S. 1342

TABLE 3
YODEL: OR4Y M,S. 1342
178 | B/d Cy <, Cy ¢/ J1l.c.b
T2 12.465 | .799 | .607 | .9905 | 6.25% |-1.574%
iR 8..87 | W | Blc Do/ a/t o/t | C(L/e) | A(L/) | B(L/x) | Cor  Min.(Co
S 5. o038 | 1agi | L4776 | —.4053| 1| —— | 2.5 | — | =7 -2
i { 1/4 1295 | .4055 | .5427] -.2977| .1600| 4.88 | 1.42 | -3.46 | 1.87 | 1.85
i - vJo | .3667] .se6a| .6730| -.2068| .1202| 4.49 | 1.74 | -2.75 | 1.59 | 1.57
3/4 L5779 1 L7433 L7853 -.1284 1 L0863 4.0% 1,88 | -2.13 1.36 1.25
. 1 . 7686 8746 887 -.0627 .0535 3,60 1.89 -1.71 1.18 1.01
0l 11/2 |1.0897 ] 1.0667 | 1.0445] ,0334] -.0t11] 2.80 | 1.56 | ~1.24 .15 61
i3 s | 1.3263] 1.1751 | 1.1622| .0876| -.0746| 1.94 | .96 | -.98 | .33 | .29
: 2 1/2 11.4745 | 1.2228 | 1.2394 | L1114 -.1280| 1.0t 36 | =.65 .08 .08
3 1.5391 | 1,2315 | 1.2769] .1158] -.1611] .30 0 ~.30 .01 .01
4~—7 | 1.5531 | 1,2215 | 1.2858} .1158] -.1700| O 0 0 0 0
71/2 | 1.5491 ] 1.2315 | 1.2833| 1158} ~.1675| -.23 | -.08 .15 .00 .00
8 1.49321 1.2097 1 1.2531| .1049| -.1482| -1.07 | ~1.00 .06 .24 .09
8 1/2 | 1.3228} 1.0959 | 1.1706] .0480| -.1226] -2.33 | -2.53 | -.20 | 1.5 .42
9 1.0269 | .8742] 1.0272| -.0629| -.0901 | -3.69 |-3.85 | ~-.16 | 3.47 | 1.06
! g 1/s | 8262 .T165| .9277| -.1418| -.0695 | -4.38 | =d.50 | .12 | 473 | 149
I 9 1/2 5928 | .5219! ,B108] -.2391| -.0499{ -4.97 | -5.21 -.28 6.34 1.89
Al 95/8 | .4693| .4087| .7503| -.2957| -.0460| -5.10 |-5.62 | -.52 | 7.43 | 2.03
e 9 374 | .330| .o858| €864 -.3571) -,04351 -5.22 | -5.99 | =77 | 8.45 | 2.12
e g 7/8 | .2061| .1527| .6362| -.4232| -.0594| -5.32 |-6.78 | -1.46 | 10.98 | 2.2
HiE (7.F.) | .07c0| .0124| .57t5| -.49%8| -.0%5% | -5.70 |-7.28 | -1.68 [13,06 | 2.53
ik
i
1
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coeflicients

residual resistance

Cre=

L ey
g7V

of each model at low speed, then following table is obtained.

MODEL Cr % 108 Max (Cps) x 108 | Max (Min.Cpy) x 108
TAYLOR 2.4 at F,=.15 | 08 at Ord.S-i— 0.37 at 0rd.7.fil

SR45.MS1382 | 3.8 at Fo=.12 1.26 at Ord.81 | 0.83 at Ord.1

SR41. MS1342 | 5.0 at Fr=.12 (13.0) at F. P. 2.5) at F. P.

It is shown in this table that Cus is the
same order quantitatively as C, and if Cos
is large, C, is large, further Cps is especially
large in full ship. In Fig. 17 longitudinal
variations of Cpsy are shown. It is worth to
note that Cpsr of the full ship form, differing
from the other two ship forms, varies mono-
tonously and rapidly becomes larger at F. P.
Accordingly, if Jones’ theory is adopted in-
tactly to full ship form, Trefftz plane which

has largest vortex is set up at F. P., brought
backwards as it is and this vortex would be
observed as so-called bilge vortices.” It is
clearly seen through Fig. 17 why the bilge
vortex is taken up as a problem firstly in
the full ship forms. Remenbering that ac-
curacy of approximation of this theory,
however, is not satisfactory especially at
the stem and the effect of induced velocity
of vortices perpendicular to the main

1.0 - -
TAYLOR'S PARENT FORM
- 414 4
FORE _BODY
L
0 4
1.0~
0
’r SR 41 M.9. 1342 REMARKS § —
CpJI>ct 000
ir -2 HINT <1000 21
t e TR A
0 == o4
AN 1 2 3 4
5 3 7 8 9 F.P.

Fig. 17 Energy of[Secondary Flow
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flow, resistance from such kinds of cause, if
it exists, is thought to be much smaller than
Max. Cps;.® Therefore we might imagine a
fairly clear image about the relation between

Cpsr and C, through the above table, and it

would be not necessarily unreasonable to
expect that, by making Cps small, residual
resistance could be reduced. It is, however,
difficult in this stage to find more suitable
relation between Cps and C, rather than this
and accordingly there are no data to‘conclude
whether the longitudinal distribution of Cps
of full ship forms is good or not. Anyhow
Cps is proportional to the square of slope of
prismatic curve, therefore this problem re-
turns to how the longitudinal distribution of

. displacement effects on the viscous resistance

and how the optimal distribution is in this
point of view.

Conclusions

Summarizing the preceding discussions,

1. By making use of slender body theory,
flow field around the section of the double
models was analyzed.

2. Sections of ships are approximated by
Lewis form.

3. Velocity potential is represented by a
source of displacement effect and circula-
tion on the frame line.

4. The strength of secondary flow so obtain-
ed is studied hydrodynamically from the
two points of view of kinetic energy T3
of Trefftz plane and inclination of stream
lines in boundary layer.

5. As the result, the ship forms of which
secondary flow becomes small, is firstly
obtained. 73 of such a flow vanishes and
the streamlines are approximately geode-
sic, and hence cross . flow inside the
boundary layer also approximately van-
ishes.

6. As draft is constant in most of the
pratical ships, so a few examples of the
ship forms which processes the charac-
teristic secondary flows are drawn on
this condition.

7. As the result, the ship forms of which

Ty is minimum are V-frame ship forms
and it is seen that the aft body of prac-
tical ships are almost similar to them.

8. The ship form which 73 is minimum
forms a bulbous bow if it starts from
vertical plated stem, and can not be
connected usually with V-shaped frame
line.

9. Practical ship forms seems to correspond
well to some of these clasifications, there-
fore the feature of their secondary flow
may possibly be grasped.

10. Longitudinal distribution of 7@ of full
ship form differs greatly from that of
the usual thin ship. One of the causes,
in which the unusual flow recently noted
appears, seems also to be these points.

Thus, the definite co-relation between
feature of the secondary flow and the ship
form is found and some of the ship forms
are proved to be realized in practical ship
forms, therefore, if the ship forms used in
practice showed best efficiency in the con-
ceivable sense at present, and if there were
not great contradiction, in the present theory
it could not be doubted that by drawing the
frame line by means of this theory the
efficent ship form as far as conceivable now
should be obtained. On the other hand, if
this theory is valid, the fore half body of
practical ship forms, particularly of U-frame
ship form, on the points of view of this paper
seems to be necessarily reexamined from now
including the co-relation with the wave-
making resistance. At last, as the theory
developed here can not predict the resistance
quantitatively and it has many unknown
points of the optimum longitudinal distribu-
tion of displacement, to continue further
deduction seems to beless efficient. It seems
to be desirable to study directly from the
points of view of both wave-making resistance
theory and viscous resistance theory.
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Laminar Boundary Layers

Appendix

Solutions of the partial differential equations

Substitute r=c—a+b=1 in Eq. (2-4) and

eliminate a, then

C=c/(1—b)—b'(c+4b—1), ?

A="—c)(1-4D), X (A-1) .

and B=A-C

Because all partial differential eqﬁations
appeared in the paper are written as the
form -

mA=C (A-2)

after rearrangement by substituting Eq. (A-1)
into Eq. (A-2) it becomes

c{(Am—-10—m+1}=b'{c+{@4b—-1)1—m)}
(A-3)

and this is a first order homogeneous partial
differential equation. Then put

m=1 _
Tam—1 Y :
and : (A-4) "
. 3m—-1) ‘
dm—-1

and Eq. (A-3) becomes
@Wm—1yx' =y {r—4(m-y} (A-5)
and further put

d‘=vy (A-6)
and
' =v'y+vy’
Hence, substituting this in Eq. (A-5), it be-
comes

(dm -1y’
2—4mo—4(m-1)

y/
=", A7
v (A7)

Integrate this and substitute it in Eq. (A-6)
and !
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2m—2 \tm1
y..-K(x+ 2m—1 y>

where K is integration constant. Further
substitute Eq. (A-4) in the above, and if
mx1/2, o

(A-8)

”1___1 )-hu-l
2m—1

/
i

_ m—1
4m—1

b =K<c+ 2m——2b+

2m—1
or

2m—2 _ m—1
2m—1 2m-—1
(A-9)

m=l N\t
c=K<b—- 4m—1>4 1

The cases apeared in the paper are shown
in the following table.

1] A=0 oo o 1/4 )
2| A=C3 | 3 11 2/11 45
3| A=2/3C | 3/2 5 1/10 1/2
4 A=C 1 3 0 0
5| A=2C | 12 1 —1/2 —oo
6 | C=0 0 -1 1 9

Accordingly in the case of 2), 3), 4) and 6)
the solutions are at once obtained as follows;

2) A:-—Q— m=3

3’
o\ 4 2
c_-K<b—~H> —sb—2  (A0)
2 3
3) A—E—C, m——é-
b1
= — Vo .
c=KG-00)f—g— (A
4) A=C, B=0, m=1
| b=K’ (A-12)
6) C=0, m=0
K
c= =21 (A-13)

The solution in the case of 1) is already
given by Eq. (5-15) in the paper. In the case
of 5), re-integration at the stage of Eq. (A-7)
shows the result

3 1+2b
c=75 +(1+2b)log ( e > (A-14)

K in these formulae is to be determined by
the initial values of ¢, @ and b. Actually,
by giving suitable values to b, the values of
¢ are calculated with above formulae.
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