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Abstract

There are ship forms having no radiating wave when they oscillate on the
water surface, which are called wave-free. If a ship is wave-free, then it has
no wave-damping so that it may be unfavourable to the practical application
but, on the other hand, it receives no exciting force of the incident wave by
Haskind-Hanaoka's relation. The latter character iz very much interesting
with the application to the theory of ship motions among waves.

The author developes the various methods to obtain such wave-free ship
forms. In the two-dimensional case, there are wave-free sections for the
heaving-dipping and rolling oscillations but not for the swaying. In the three-
dimensional case, the conelusion is not only almost the same, but there are
many interesting cases. '

1. Introduction

The water waves produced by a ship are almost always unfavourable phenomena for
the naval architects. In this point of view, the problem is of variation rather than of
boundary value, and at the beginning of the 20-th century Lord Kelvin® shew examples
of a wave-less pontoon which has no canal wave by the interference and just after him
Prof. Yokota? proposed the possibility of the wave-less, rolling-less, pitching-less and
heaving-less ship.

Since then, after about a half century, Prof. Inui® had a success in the realization
of a wave-less ship although it is not wave-less in the mathematical sense. His success
encourages us to research this idea in another problems.

For this aim, it will be most effective to study the property of the wave-free potential,
because the velocity potential consists of two parts, that is, it and the wave-source one.

Namely, at first, does there exist the wave-free potential which describes a motion
around an actual ship-like body? Secondly, does the wave correspond to the body
producing it in one-to-one manner?
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The answers are affirmative Afor the problem of the uniform motion excepﬁ the first
question in three dimension and this theory seems very usefull to the practical appli-
cation, especially methodologically®.

The present note deals with the problem of the oscillation of ships with no advance
speed.” In this case, what there is no wave means that there is no wave-damping, so
that it may be not preferable in this respect but do in the sense that the exciting force
of the on-coming wave vanishes if the radiating wave by the motion in the direction
of that force vanishes. The last relation is a corollary of Haskind-Hanaoka's theorem®"®,
which is easily understood from the asymptotie character of Neumann function deseribed

in the Appendix.

2. Wave-Free Potential' V"

Let us consider a Cartesian co-ordinate, taking the origin on the mean water surface
and at the center of the body, z-axis vertically nupwards and z-axis length-wise forwards.
Assume the water motion as a harmonic oscillation by the same motion of the body with

circular frequency o=2x/T. Then its wave number K is o%g.
Let the real part of ge't its velocity potetial, then ¢ must satisfy the water surface

condition®:

d
Now, if ¢ is deduced from the function m by the operation as follows;

¢=Km +§z—m, | (2.2)

then the surface condition (2.1) for m gets to

a2
K’m—a—zzm=0, for 2=0, 2.3)

Hence, if m has & symmetry:
m(xr Y, Z)= -_m(z! Y, —2), (2~4)

and has no wave, ¢ of (2.2) satisfies the water surface condition and clearly has no wave®.

For example, suppose simple functions as m

m=il’ 'r='|/a:’-+y2+z5,' (2.5)
oz r
— 2 2 2
e 1 1 =V +y*+{z+h), 2.6)

T =B,
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and consider a heaving oscillation.

Since the motion has an axial symmetry, the body profile may be caleulated by making
use of Stokes’ stream function.

Let it be ¢, then in the present case

sin®é 3 . '
¢=T +K—T2 sin® 4 cos 4, for (2.5), @7
1 1 z+h 2—h
=rigin®f —— |+ K fo
¢ n (m m)+ ( p ) or (2.6), (2.8)
where 2z=-—rcosd,
and at the body surface
¢m%z sin® g, (2.9)

The body profiles can easily be calculated and are shown in Fig. 1 and 2 with dotted
lines.

The same procedure ean be applied more easily for the two-dimensional case and
that the complex velocity potential can be used in this wave-free case because all the
motion has the same phase.

Now, let f(t), t=y+1i2, be the complex velocity potential as

FO)=9¢(y, ) +ig(y, 2), (2.10)
then the surface condition becomes

Re{Kf—%f}=o, for z=0, (2.11)

and if there is a regular function m(f) such that
Re{m(t)} =0, for z=0, (2.12)
the function f computed as

Ji)= Km(t)ﬂ m(t), (2.13)

is wave-free.
Some of the simplest examples are

m(ty=iftr, fty=2K_ 1

i g1’

mit)=log ({4 ), =~ + Klog ((X20), (2.15)

(2.14)
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mity=r A A
(t+ih)y (E—zh) (2.16)
Fit)= KA KA  niA + niA '
(t+ih) T =tk (E+ih)t | (E—ihy
Since the boundary condition for the heaving motion is
$=—1v, 2.17)

solving the equation, the wave-free body profile can be obtained as shown in Fig. 1~3.

In general, let us imagine a half-immersed cylinder and N-points on it except on
the water surface and take up N-wave-free functions such as (2.14). Then, (2.18) gives
the equations to determine the potential and they may not always be singular or may
have a unique solution. This means that the motion of any cylinder may be represented
by wave-free potentials except near the water surface. By the same procedure, we
may have wave-free ship-like form in the case of the rolling motion, but not of the
swaying motion. However, their cases may be more interesting to study by another
treatment succeeding.

3. Pressure Distribution

Let us consider the swaying oscillation of an infinitely long and shallow cylindrical
vessel floating on the water surface™ ¥,
The boundary condition may be written as

3 ~_9 —_0

where {(y) means the offset of the cylinder, or integrating it,

#y, 0)=Ly), for |yl=l, (3.2)

In this case, the function satisfying the condition (2.12) can be represented as

miy=—r| Ly, (39)

where ¢ is a real function.

Then, the wave-free potential f becomes

ﬂ(y) 1 aly")dy’
o= Lt —y' W L G-y’ @9

Moreover, the linearized pressure p(y,z) defined as

10 L a
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is given as
P(y, 2)=Re {Ksm(t)+ 2 m(t)}, (3.6)
and especially
dz
Py, 0)=K ’rr(y)-!-?y?d(y) , : 3.7
where the boundary values are assumed as
d
+1)=—— =
o(E D= o(=D=0, (3.8)
The offset of the cylinder is given by (8.2) as
K (' olydy ., d
= —— . 3.
=1 T Loy 39)

Integrating (3.9) and putting the boundary condition (3.8), we have
1
| caray=2{" o 10g 112 4y, (3.10)

Then, if ¢ is an even function, this integral vanishes, and even if it does not, since
K-value may be very small in the practical case, the displacement volume of the cylinder
is very small.

For example, putting y=—cos # and

Do sinmali
o(y)= smfil w—’““qgﬁ L. (3.11)

the offset becomes

ty)=sinno+K { cos(n—1)¢ cos{n+1)8 }, (3.12)

n—1 n+1

These curves are not so like as any section of ships clearly.
Lastly, it is very interesting to remember the wave-free potential of the uniform

motion with constant unit speed.
In that case, the water surface condition is

Im{Kf——i%f}=0, for z=0 (3.18)
and the wave-free potential is given, by the same function m(t) as (2.12), in a manner that

fH)= z{chtm—m(t)} | 8.14)
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Then, the surface form becomes

Ny, 0)=R8{Km+i%m}, (8.15)

and the pressure
. _
p(y)/p=Re{K =m+%m}. (3.16)

Comparing (3.13), (3.14), (3.15), (3.16) with (2.11), (2.13), (3.9), (8.6) respectively, if the
same function m(t) is taken up in both cases, it is easily found that the pressure becomes
the same and the complex potential is conjugate with each other.!®4

4, Long Wave Approximation!s®inieinzozn

In two dimensional problem, the wave-length very much longer than the body
dimension usually, that is, X is very small. When K is very small, the velocity potential
near the body surface can be approximated by the one such that

]
=4y, 0)=0, (4.1)

that is the potential assuming the water surface as a rigid surface.
On the other hand, since the wave height is given as (A.25), expanding its exponential
term, H+(X) will be nearly

HYK)=a+KB+0(K?, (4.2)
where
a=|5sas, 4.3)
3:5 (%qi—gé%)(zﬂiy)ds. (4.4)

Firstly, let us consider the heaving motion. The bhoundary condition is

o __ 0z
m -~ o’ 4.5)

Then, @« and § is easily found to be

__{ 6= 5 _
a= S 2 ds=, (4.6)
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where B means the breadth of the eylinder at the water line.
o0z
ﬁ:-S (s+9)geds=—(1+k)A, 4.7

where A means the displaced area and k. the added mass coefficient of the ecylinder,
and also the symmetry of the curve C is assumed throughout this paper.
Collecting these results, H* becomes

H+(K)=B—K(1+k)A , (4.8)

Hence, the wave-free condition is
B=KQA+k)A, {4.9)

Here, it must be remembered that k. is logarithmically infinite for K—0,'® so that
its value may be taken for a given K-value.

Motora® obtained nearly the same conclusion as this, considering the integral (A.25)
more physically,? and one of his wave-free cylinder is very much like the one shown

in Fig. 2.
Secondly, let us consider the swaying motion. The boundary condition is
9% _ 9y
m  on’ (4.10)
and
a=_§ Y gs=0 (411)
. on ’ "
p=—i| +Hghds=—i+kd, (412)

where %, means the added mass coefficient for the swaying.
Namely,

H+«(K)=—1K(1+k)A, (4.13)

and the swaying motion can not be Wave-freé to this order of the approximation.
Lastly, for the rolling motion, the boundary condition is to be

0 0% Oy
==y, (4.14)
. Then,
a=0, (4.15)

g=—iA(OM+k,0C), (4.16)
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where M means the metacenter and C the center of the added mass, that is,

= = = d oz
OMA=(0B-MB)A=\ y{ 22X —y 2%
( ) Ly(z Yy )d,s , (417
- . b oz
k,0CA= chﬁi(z%—y-é-;)ds , (4.18)

where ¢, is the potential of the swaying.
Namely, for the rolling motion,

HHK)=—iKAOM+k,00C), (4.19)

so that the wave-free condition may be

OM/OC=—k, , (4.20)

which means that each of the metacenter and the center of the added mass lies at the
other side of the origin with the ratio k..

Ursell'® found one of such eylinder, but Hishida!” found that there is always a
point around which the rolling motion has no wave.
In fact, since H* function of such motion about a point P can be given as

HHY{K)=—1iKA[(OM+k,0C)+0P1A+k,)] (421)
the wave-free condition is
— oM -l—k ocC
OP=—"" """~
A+ky) (4.22)

then such point will be always found.?®

5. Slender Thin Ship

In the three dimensional problem, the analysis becomes complicated and also it is
not always the case that the wave length is very large compared with the ship dimension.
Thus, we confine ourselves with the so-called slender thin ship. In this type, we mean
the ship which is repersented by the singularity distribution over the x—z plane. Let
us consider any singularity distribution g(«,2) over this plane. Then, the wave produced
will be given by a constant multiple of the function:

H(E, a)=§1 S“ (@, Rty (5.1)

-1J)~d

Hence, introducing an auxiliary function oz, 2) as
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. d
uz, z)~aa(x, 2)+ Ko(z, z) , (5.2)
with the boundary condition
olz, —d)=0, (5.3)

and putting this into the above and integrating by parts, we have

H(K, a):Sl oz, 0)eiEeoos 0y | ‘ (5.4)

This is the same form as of the slender ship theory,** the difference is that ¢=0 does
not mean the zero-displacement, although the wave-free condition is

For example, let

o(®, 0)=0 . (5.5)

o(z, z2)=—m{zp(z+d) , (5.6)

=-1,0 -0'.5 Q0 W.L. O"S 1.0
\\ -z{& + z)/&
v

[ 1.0 B.L.

Fig. 4. Draftwise distribution of
wave-free singularity

with an arbitrary funection m(z), then u(x, z) may
be calculated as shown in Fig. 4. From these
figures, we may easily imagine that the section
forms of the ship may be very similar as the
forms of Fig. 1 and 2.

Now, the wave-free ship form has no wave-
damping obviously, for there is no energy dissipation
by the wave. Namely, there is neither wave-exciting
force nor the wave-damping, so that the free motion
among the wave with no viscosity is indefinite and
in fact divergent because the motion is proportional
to the exciting force over the damping, but the
damping is the square of that force.

Here is a question whether it may be possible

to make zero the exciting force but not the damping.

This is easily answered by putting.
olz, 0)=
with

a

dz

d

22 a(2)+ K2 costa a(x) , (5.7)

d

il)——--aa(i 1)=0, (5.8)
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because, putting these into (5.4) and integrating by parts, we have
H(K,a}=0, but H(K,§0)+0 for f##a or a+t=r, (5.9)

and this means that the exiciting force by the wave coming from the direction « is zero

but the damping is not.
For example, taking the slender ship approximation,® let us consider

o(x, )= Ax) , (5.10)

for the heaving motion, where A(z) means the sectional area curve, and

olz, 0)=xA(x), (5.11)

e R e R R

for the pitching motion.

Let us consider as «=0 and also for the simplicity put
alx)={(1—x%)?, for the heaving, , (5.12)
a{z)=2(1l—x*3?, for the pitching. (5.13)

After the operation of (5.7), we have the sectional area curve as shown in Fig. 5.

4 HEAVING
19 R Y

Fig. 5. Sectional area curve

As seen from the figures and the formula (5.7), these sectional area curve are the same
as those of the uniform motion with the constant speed for whieh the transverse wave

vanishes, if both wave-length is the same.#!®

6, Summary

There are ship forms having no radiating wave when they oscillate without advance
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speed. Then they receive no exciting force from the incident wave by Haskind-Hanaoka’s
formula.
To obtain such ship forms, there are following four ways:

i) To deduce from the wave-free potential introduced by the use of the adjoint

differential operator of the water surface condition.

ii) To obtain the wave-free condition by the approximate wave-height formula when

the wave-length is very large.

ili) To consider the wave-free singularity distribution, for example, about the slender

thin ship.

iv) To cancell out the waves by their interference. This is not explained in the
paper, but it will be obvious.

Thence, the two-dimensional wave-free ship form
i) exists for the heaving motion and has large bulges,

ii) practically does not exist for the swaying motion,

iii) exists for the rolling motion (rotatory oscillation about an axis) but we can say
more precisely that there exists always a point the motion about which produces no wave.
Such ship forms does not experience the wave-exciting force but also has not the
wave-damping, so that the motion among the wave may become very large.

In the three dimensional problem, the result may be like the above, which is con-
firmed principally by the slender thin ship theory. In this case, however, there is
another type of the wave-free ship form which produces no wave in one direction but does
not other direction so that the wave-damping may not vanish.

The ship motion among waves may be estimated fairly precisely by the present
knowledge of the theory, but the dependence of the motion upon the ship form is not
always sufficient because of the various difficulties. In this circumstances, such study as
developed here may be a method to attack these difficulties.
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e
Appendix: Green Function and Haskind-Hanaoka’s Formula,

Unit source potentials, call it fundamental singularities, are

1S O(P, Q==+ lim =

® oqke-k(z+z‘}+ik(z-—-z')cos&+ik(y--y'}slnﬂ
1 Ty p—to T

) k—K+ui d, AD

-

Eﬁ%ﬁﬁs«m.“. e
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—ktz+z') Cos (y ,y )
{2
278 P, Q)= log( )+2&§305 = dk (A.2)

where
P=(z,y,2) or (y,2), Q=(x',y',2") or (¢, 2),
r=PQ, 'r==3’5, Q=(z', ¢, —2) or (y', —2').

and the subsciript (2) or (3) on the shoulder of S means that it stands for the two-or
three-dimensional one respectively.

Necessary Green functions to solve the present problems, Neumann functions, are
such that

NP, =8P, Q)+ AP, Q), (A.3)

where A(P, Q) is regular in the water, and
9 —0 or - _
EN(P’ @)=0 or P (S+4)=0, on C, (A.9)

where 7 means the outward normal of the wetted boundary C of the body.
Moreover, since

S(P, @)=5(Q, P), (A.5)
it will be also assumed that
N(P, @)=N@Q, P}, "(A.6)
By this Neumann function the potential ¢(P) regular in the water can be represented as
follows:
#py=~\ SE-NP, Qas,, (A7)

Especially, A(P, Q) of (A.3) may be
AP, By=| {51—S(P, )| NQ, Rse, (49

If the point P lies infinitely far from the body but near the water surface, since S(P, Q)
becomes approximately

S@(P, Q)——te Kt =Kyl {A.9)

S P, Q)—s (A.10)

exp{ K(z+2")—1K&+1K(x' cos #+y sin 8)}

where

Br=gity:, x=dcosf and y=asinf,
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A(P, B) will become

AP, Rys—io-KsxiKig2(R),  for y=20, (A.11)
where
Se:(y, z)=§ {%Qe—xvtm’}mﬂ Qdse , (A.12)
and
AD(P, Ry 5 exp(— Ke—iKapu(R
: 52— exp(— Ke—iKa)gu(R, ). (A.13)
where
gl 17 0)= | {o—e e sim ot ss LN(P, Q)dsc (A14)
¢ 4]

From the property of Neumann function, it is clear that

ad ¢

-6‘?95“:—"37% , (A.15)

where
$o(P)=e Fr=iEy (A.16)
Bo( P; )= g~ Fr+iK @cosd+ysing) (A.1T)

Sinee exp. (—Kz+iKy) is a regular wave advancing to the positive (under sign} or
negative (upper sign) direction and exp. {—kz+1k(zx cos f+y sin @)} is also a regular plane
wave coming from the direction 6, these are all diffraction potentials..

Adding (A.11), (A.13) to (A.9), (A.10), the asymptotic formula of Neumann function

will be

NP, Qoo (PN @+87Q) ,  for y20, (A.18)
NP, Qo] 55— expl~ Ke—iKH$oG: 6)+44Q; 0) (A.19)
Hence, putting these into (A.7), any potential tends to
¢‘2’-—>ie‘x’:‘ix‘;H*(K) for y=0, (A.20)
()= b8 5ds, | (A.21)
P —— \/;K;exp{.—-Kz—iK@}H(K, n+6), (A.22)

RSBIL e v
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H(K, a)=§ {¢n(0—ﬁ)+¢¢(3—n)}%i—ds , (A.23)

Clearly, the function H is a constant multiple of the diverging wave-height.
On the other hand, since

o _, 3 _
L(m 342 m)ds—o , (A.20)

the H-function ean be written also as

H(K, 0)=§0(¢og%—¢%¢o)ds , (A.25)

and this is' a wusual representation. Now, (A.21) and (A.23) are Haskind-Hanaoka’s
formulas, that is, the wave-height produced by the body-motion is proportional to the

exciting force or moment of the incident wave because the pressure is proportional to
the potential.
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