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Abstract

The author deals with the boundary value problem of a floating ship when it
oscillates or diffracts the incident wave. At first, he defines introductly the velo-
city potentials, forces and moments for the oscillations corresponding to six de-
grees of freedom and the diffraction and shows the reciprocity between the forces
and damping integrals. Secondly, he derives the asymptotic expansion of Neumann
function which solves these boundary value problems and finds those coefficients
of expansion relates closely to the forces and moments when the ship oscillates
and diffracts the wave. Considering the variation of Neumann function, he also
shows the variation of the forces and moments by a slight change of the ship
form. Thirdly, he converts the boundary value problem to the integral equation
for Kotchin’s function and derives similar relations between the force coefficients
and Kotchin’s function to Kramers-Kronig’s. Lastly, he introduces some integrals
of which extremum problems are equivalent to satisfy the boundary condition and
gives two examples of solutions at high frequency.

Introduction

Recent progress of the theory of ship motion is built up soundly on the theoretical
ground of the water wave and many works have been down on the boundary value prob-
lems of oscillating ships theoretically and numerically?. In this paper, the author is in-
terested in the mutual relations of various force coefficients, asymptotic character of
the velocity potential, the variation of forces by a slight change of the ship form, Kot-
chin’s function and the extremum property of the boundary condition.

He gives the formulation of problems and definitions in the first chapter, discusses the
asymptotic property and variation of Neumann function in the second chapter, the inte-
gral equation for Kotchin’s function in the third chapter and the boundary value problem
as the extremum in the last chapter. In each chapter, the discussion for two-dimensional
problem is added in the sub-section as far as it differs from the three dimensional one.

* Assistant Professor; Dept. of Mechanical Engineering, the Defense Academy.
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186 M. BEssHO

that is, the diffraction of the wave has a reversible property. In the same way as the
above, we have by Green’s theorem, making use of the asymptotic expansion (2.1.14),

d - — 3 1K (% - ..
Sgs <¢i‘é;¢j'—¢j on ¢z>d3——2‘; SO H{(K, 0)H{K, 6)do , 4,7=1,2,---,6,d, (1.1.17)

where the bar over the letter means the complex conjugate to be taken. Since the
boundary condition is real, we have

Fii— f= Fis— fii= Fis— fis

tK (% _ iK (= _
=K S H(K, 0)B{K, 0)ip =5 S Hy(K, 0)BL(K, 0)d0 , (1.1.18)
0 2

when 7 equals j, this is the energy dissipated by the wave. Putting d for i and 1, 2,---,
6 for j, since

d - - @ Jd - ~ 0 J -
¢d5;¢j~¢j5n‘¢d=(¢o+¢d)5;¢j+ <¢15g¢0“¢05;¢j> ,

we have
- iK {2 - .
H{K, a+r7)— Hy{K, a):—z:g HyK, 6, 0)H{(K, 6)do , 7=1,2,---,6. (1.1.19)
i 0
If both i and j are the diffraction potential, (1.1.17) gives the relation
— iK [ -
HoK, a+n, B)— Ha K, B+, a)z—z; S Ho(K, 0, a)Ho(K, 6, B)d0 . (1.1.20)
0

The reciprocity (1.1.15), the relation (1.1.19) and (1.1.20) give us much knowledge of the
diffracted wave and its relation to the radiation potentials!®,

1.2, Two-dimensional Problem

If the ship is very long so that the water motion is limited in the y—z plane, we
have two-dimensional problems corresponding to the preceding. The definition and nota-
tions are preserved but the motion is limited to the followings.

1) swaying oscillation (y-axis) suffix 2
ii) heaving ” (z-axis) 3
iii) rolling 4
iv) diffraction d
v) incident wave 0

Thus, many of the formulas are the same form as in the former case, except that the
integration is performed on the periphery curve C not on the surface.

In the following let us pick up the difference. The regular wave potential may be
defined as




On Boundary Value Problems of an Oscillating Body Floating on Water 187

$o(y, z; K)=exp (—| K |z+1Ky), (1.2.1)

and Kotchin’s function
0
Hy(K)=— g IO+ BB} s

-\ {¢j—§;¢o<fc>~¢o<f<>5%¢jids , (1.22)

HAK, + K)=Hi( + K, K):SC {¢0(K)+¢d(K)}£;¢o(ﬂ:K)ds . (1.2.3)
The formula (1.1.17) can be deformed as
9 - - 0 . - e X
SC <¢i—é-n—¢j——¢j-é;¢i>ds:—-z{Hi(K)HJ(K)—i—Hi(—-K)H,-(-—K ), (1.2.4)
then
Fri— fis= Fi—fi= Ju— fis

=i H(K)H{K)+ H{— K)H{(—K)}
=i{ B(K)H{K)+H(—K)H{(—K} . (1.2.5)

For example, if the ship is symmetric with respct to the x—z plane, we have clearly
HyK)=Hy-K), H(K)=—H(-K), Hy(K)=—H{(—K), (1.2.6)

then by the above formula we have -
Hy(K)] Hy( K )= Hy(K)/ Hy(K) 1.2.7)

which shows that the exciting moment and sway force of the wave have the same phase.
Putting d for ¢ in (1.2.4), we have

Hy(—K)— H{K)=i{ Hd K, K)H{K)+Ho( K, —K YH(—K)}, (1.2.8)
and that
H(K, —K)—HdK, —K)=1{| H(K, K)|*+| H(K, —K) 1%}, (1.2.9)

Thus, if we know H: and Hs, we may calculate HiK, +K) from (1.2.8)'*.

2. Neumann function?1%14

2.1. Three-dimensional Problem

The velocity potential of the unit source at Q satisfying the water surface condition
is well-known? and let us call it the fundamental singularity, namely,

C1/1 1y 1 f (~exp {—k(z+2)+ik(@—&")} Ldkd 911
S(P, @)= 4n<r1~ r2>+ yoe #1_13108 So h—K -+ i w, (2.1.1)

—_
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AP, Q5= ey €55 56u(@, )+
+¢3(@Q)ur(P) + pry(Q)rs2(P) + ru( Ques(P)+-- - -, (2.1.10)

where

$4Q, )= S SS N, P)—Egz—qSo(P, 2)dS
su@={| M@ P2 {a(s—5)las, (2.111)

ou(@=([ M@ Prop-lu(a— ) Jas. ]

Adding (2.1.8) and (2.1.10), we have finally

[ K —Kz—1K cee
N(P, Q) s ™ 00Q, )+

+ 01/ (Q)u1(P)+ Pr(Q)rea( P+ P Ques(P)+- -, (2.1.12)

where

@d(Q! ¢):¢0(Q’ ¢)+¢d(Q’ §0) ’

OV(Q =0 Q)—s,  O(Q = Q)+7 ,

) R 2.1.13)
@II(Q>—¢H(Q)+/.Z? <Z ——-K—) ,

O Q)=¢m(Q)+v’ <2' —%) .

Then, the velocity potential becomes approximately at infinity,

) K ke
¢(P)P—»°°'\/27Z'pl. € *H(K, @)+

_ul(P) SSS @3’—3-3—(15*%2(})) SSS @11%613-*%3(13) SSS @1{1‘%2—d3+. o, (2114)
where
HK, ¢)=— SSS 0uP, )L a5, 2.1.15)

which is the same as the exciting force or moment by (1.1.10). Thus its first term is
the wave diverging outwards but this term vanishes exponentially into the water depth,
where the second term dominates over other terms and this is the doublet with the z-
axis as its axis and its strength for heaving motion is




188 M. BESSHO
where

P=(x,y,2), Q=,v,7), Q=,v,—2), n=PQ, n=p0,
o=zxcosu+ysinu, & =z cos u+y sinu.
If there exists Neumann function of the present problems, which has the following pro-
perty:
9
%N(P, =0 on S, (2.1.2)

NP, Q=S(P, Q)+A(P, Q) (2.1.3)

where A is a regular function, then we may solve our boundary value problem as
9%
wPy=-(| 2N, Quse. 2140
s on

Since the function A is regular and must satisfy the condition

d

]
57 AP, Q)z“E{S(P’ Q) onS, (2.1.5)

it may be written by (2.1.4) as follows:
A(P, Q)'—:SS N@Q, R)E%S(P, R)dSr . (2.1.6)
S

Lastly, it is natural to assume that Neumann function has the reciprocity, namely,
N(P,Q)=N@, P), 2.1.7

because S(P, Q) has the same relation.
Now, let us consider its asymptotic expansion. At first S(P, Q) can be expanded
asymptotically as follows:

S, Q)2 5 e Q, )

2rpi
1 -
+ ("‘?{) (P + 2 1a(P) +y us( Py -+, 2.1.8)
where T=pCcosgp, y=psing, z'=p’cos¢’, y' =p’singy’
1 /8 1 9°\1
d O i A T Y S A SR S
an ui1(P) > <az Kaz2> S r xi+yit+zt,

(2.1.9)
ug(P)=——% w(P) | us(P):—-—“é%‘ w(P) .

Putting this expansion into (2.1.6), we have also
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9 i 1
SSS @3'—%d5=—,ggs (.Ds'—éidS:—K—[Aw—-K(V—}» fil, (2.1.16)

where / stands for the displacement volume and A, the water plane area, namely, this |
is equal to the sum of the statical and dynamical vertical force divided by oK. Con-
versely, we may verify that this term vanishes if there acts no vertical force upon the
the ship, and then the influence of the oscillation of the ship-is very small in deeper re-
gion of the water. When the free surface effects nothing, that is, the body is fully sub-
merged deep, these terms as in (2.1.16) are symmetric in every direction of motion and
moreover they have extremum property which results from their positive definite char-
acter®, but we may not verify anything in the present case, because the kinetic energy
of the present system becomes infinite. The last example of the utility of Neumann
function is to estimate the variation of various coefficients resulting from a slight change
of the ship surface. According to the reference”, we have the variation of Neumann
function when the ship surface swells outwards by the amount dv measured along the
normal as follows:

ON(P, Q)= SSS grad N(P, R) grad N(R, Q)(6vdS)z . (2.1.17)

In the same way, the variation of the velocity potential is

S0(P)= SS grad O(R) grad N(P, R)3udS | 2.1.18)
S
where
9 9-0 ons (2.1.19)
on ’ o

Then, putting the asymptotic expansion (2.1.12) into the above formulas and comparing
both sides, we have

dH(K, p)= S SS grad @ grad 9,6vdS . (2.1720)

Although the variation of heaving force is also deduced in the same manner as the above,
other ones can not be, so that we must calculate them by the same manner as the one
used to deduce (2.1.17) or (2.1.18).

The result is

5SS i dS=SS grad @; grad 0,00dS | 1o
S on S

or
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—0 SS i %ﬁj dSZSS‘ (grad x; grad xz;—grad @; grad @;)6vdS ,
S S
,7=1,2,3. (2.1.22)
These formula permits us to estimate the change of various forces by a slight change of
the ship form, for example, we see by (2.1.22) that added mass increases as the ship
swells at the part where the velocity is greater than the body velocity®.
2.2.  Two-dimensional Problem!?1%19

The fundamental singularity is given as

1
S(P, Q>=—2—7-r- log —:i—+—1— lim dk, 2.2.1)

S“’ e~ 2+ cos k(x—a)
T p—t0

0 k— K+ pi

where

PE(?/: Z), Q5<y,)2,)’ QE(y,, ZI)) rl:ﬁ@s 7’2=I_)—5.

Neumann function may be written also as (2.1.3) and the boundary condition of A is
(2.1.5) and it is represented as (2.1.6). The asymptotic expansion of S becomes as

S(P, Q)—}—:—» — g KGETN—iKly=v'] | <z’—~~I1(—> {a PYy+ vy us(P)}y+--+, (2.2.2)

where

1 2 __ 2
ul(P):—;(—f?“yKrf > ’ 7‘:\/2/2"*‘22 )

(2.2.3)
us(P):—~£;u1(P). ~
Putting this expansion into (2.1.6), (2.1.3) and (2.1.4), we have the following expansions.
A(P, Q);;—ie’Kz‘iK'”‘¢a(Q, (sgn YK)+¢3(Q)us(P)+ ¢r(Qus(P)+--+,  (2.2.4)
N(P, Q)—— —ie**=iKIW0(Q, (sgn y) K) ‘
+03' (Q)us(P)+ Py Qus(P)+- -+, (2.2.5)
$(P)—ie=*+~ X1 H{(sgn y)K}
_ )99 o 9% a5y ...
ui(P) SC D3 n dS—us(P) SC - n dS+---. (2.2.6)

The meaning of notations is like as the preceding. The last discussions of the varia-
tional formula are the same as in the three-dimensional case.
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3. Integral equation for Kotchin’s function!:5:6,10
3.1.  Three-dimensional Problem

The velocity potential may be represented by making use of S(P, Q) as follows:

i} d
=, (s —s) S, Quise, @11
Changing the order of integration, it may also be written as
HP)=¢1(P)+¢s(P), (3.1.2)
1 /0 7} 1 1
¢1(P)—Z; SSS (955};*—5”* ><7—7;>d3, (3.1.3)
_1 . (* {~ H(k utn)exp {—kz+ika)
G(P)= 4 #1_1310 S_x So h—K+imi kdkdu , 3.1.4)
H(k u)—'gg ( 29 >ex {(—katika}dS (3.1.5)
3 - s ¢8}’L an p w . A,

Now Neumann function of the domain outside the surface S with its mirror image

with respect to the water surface is often known if its water surface is considered as
rigid. Let it be N(P, @), then

$1(P)= ——SSS M(P, Q)Ea;qhds, (3.1.6)
where
M(P, Qy=N(P, Q)—N(P, Q),
d d
o 1=5;;(¢—¢z) .

Then, we may write down the velocity potential as follows;

¢(P>=—S§SM<P, Q)%d&—ﬁ;&]w Ak WPl w) oy 3.1.7)

TUP; b, u)=exp {—ka+ika}+9UPsk, u) (3.1.8)

Pk, u)——-gg M(P, Q)—a% exp {—kz+ika)}dS . 3.1.9
S

5%32(13; B w)=0 on§. (3.1.10)

. Putting (3.1.7) into (3.1.5), we have the integral equation to determine Kotchin’s function,
that is,
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1 3 o H .
H(p, 0)=Hi(p, )+ S_m S (F, ”Zﬂ’;ﬁfpf B bdbdu, (3.1.11)
where
. 0=-\| a0, (3.112)
Lp, 0 & )= S SS JUP; k, u)—é% exp {—pz-+ipa(0)}dS . (3.1.13)

This is of the second type of Fredholm’s equation so that it may kave a unique solution.

In general, to solve this equation numerically is difficult and is not the present problem.

Here we will proceed to obtain some interesting relations by applying (3.1.7) and (3.1.11).
Firstly, multiplying boundary value to (3.1.7) and integrating over S, we have

frmn | arBds=—[ petaside || [T BAADIAD) g,

4z )_, k—K+pi
(3.1.14)
where
2
¢io<P)=-SS M(P, Q) as, (3.1.15)
s on
¢
Hio(%, u):-—gg TJUP; k, u)——dS . (3.1.16)
S on
Secondly, putting 4 for j in (3.1.14) and adding a simple term, we have
: 1 (= (> HiK, a; b, ut+m)Hilk, 1)
H; ; L 80 b Kt i kdkdu | (3.1.17)

and putting K, « for p, 6 in (3.1.11), we have also very similar formula as the above,
that is

kdkdu , (3.1.18)

m&w=mmmwigygmmkwwMKmhm
0

k—K+pi

where it is to be noticed that

6¢d(K a)

Hu(K, a; &, u)=-SS JUP; b, ) ———""=dS=L(K, a; k, u) . (3.1.19)

These are similar to Kramers-Kronig relations® and usefull to estimate the second ap-

proximation to the first one”,

3.2. Two-dimensional Problem

The velocity potential is to be
HP)=¢:1(P)+¢(P), (3.2.1)




194 M. BESSHO

1 a J 73
o1(P)= o SG <¢ o on >10g " as, 3.2.2)
1 ®  H(—k)e-Iklz+ity
Py=— . 2.
9:(P) 2r #I_IE%) S—-oo | k| — K+ pi ks (3.2.3)
H(k)zg (¢_a_~,___a*¢>e—k[z]+ikyds (3.2.4)
e\ an on ) o

If there is Neumann function stated as the preceding section, we may write as (3.1.6),

namely,

$(P)=— SC M(P, Q)'a% (—2)dS, (3.2.5)

then putting this into (3.2.1) with (3.2.3) we have finally

= _H(=R)JIP; k)

_ 9 o, 1 )
#Pr=— mp, Q2Lasik I e, (3.2.6)
where
TUP, Fy=e-Hs+iv 4 3P, b (3.2.7)
0. k):S M(Q, P)-2- g-tris+inngs | (3.2.8)
Iod an
and
d )
9P, =0 on C (3.2.9)

The integral equation for H(k) is obtained by putting (3.2.6) into (3.2.4) and we get
H(—R)L(p, k)

1 oo
HO)=Hipty | SRR (3.2.10)
where
— % —— __a____a_ e z2+1iky
Ho(k)_—-go TP, B3 dS—SC <¢o —— ¢o>e klz+iky S (3.2.11)
3
¢o<P>=—S M, Q2 gs, (3.2.12)
¢ on
and
Ly, k)=§ TUP, k)2 e-toi= immgs (3.2.13)
c on

In the same way as the preceding the force coefficients becomes

o Hj(-— k)Hio(k)

o VR —Kt i dk, (3.2.14)

a 1
ﬁj:_go ¢z057‘;¢jds+"§; S
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and
H(K)=Ho(E) + - gl Hj(g’__;ﬁfz@ dk, (3.2.15)
© H(— aol L%,
H(K)zHo(K>=§1;S_m (1 kfg{gim dk, (3.2.16)
where
HalK, y=L(K, k). (3.2.17)

4. Boundary Value Problem as Extremum?!®

4.1. Pressure distribution

A. H. Flax introduces the variational principle into the theory of thin wing to solve
its boundary value problem by making use of Rayleight-Ritz’s method!®. His principle
is directly applicable to the present problem for the pressure distribution pulsating on the
water surface, and it is easier than his case because of the reciprocity of the velocity
potential and no use of the reverse flow potential.

Now, let us consider the pressure distribution p(x, v) exp (fwf) over a part S of the

water surface, and the resulting velocity potential iw¢ exp (iwf), then they must satisfy
the following equation at the water surface

1
—b(x, S
<K+——aaz>¢(x, y,0)=1{ Pg p(z,y) on | @iy

0 outside of S
Hence, using the fundamental singularity (2.1.1), we have the representation

¢<P>=—-—1~Sg NQSP,QdSQ,  2=0. 4.1.2)
og s

The boundary value problem is to determine p so as to satisfy the given vertical velocity
on S.

It is easy to see the reciprocity
SS pi—@—mdszgg 12 4:dS 41.3)
s’ 0z s 9z ’
Then, let us consider the integral
I""SS p <-"?ﬂ_zi>ds, (4.1.4)
S a0z 0z

where 3f/oz is the given boundary value, ¢ is supposed to be any potential resulting from
the pressure p, and f is the accurate potential of the pressure z. Taking the variation
of 7 and making use of (4.1.3), we have
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BI:ZSSS 5p<%f--——g—§)d8, (4.1.5)

then if 0¢/0z equals 3f/oz, I equals zero, and inversely if &7 equals zero under arbitrary
variation of p, 9¢/0z equals 3//dz. Namely, the boundary value problem is equivalent to
the extremum problem of . Thus we may use Rayleigh-Ritz’s procedure to solve the
present problem.

Although this numerical process is practically the same as the usual one in which
we approximate the boundary value by making use of any set of orthogonal functions, but
this is basically rational especially as the method to obtain approximate force coefficients.

4.2. Gauss's integral

The preceding method is unfortunately not applicable to the displacement ship but
we may find Gauss’s integral which is made use of to solve Dirichlet Problem in the text
book of the potential theory®. It is the integral as

G=SO 62F—$)dS, 4.2.1)

where ¢ is any comparable potential of the source distribution ¢ over C and f is the
given boundary value. It is easily seen that the extremum of this integral is equivalent
to Dirchlet problem. In the same way, we may consider for Neumann Problem the fol-
lowing integral

N:SC y<—%’i~——2§£>d§‘, 4.2.2)

where ¢ is any potential of the doublet distribution to be determined and 3f/on is the
given boundary value, but this integral is usually improper and more difficult to evaluate
numerically than the former. Fortunately, since Neumann problem is converted to
Dirichlet Problem in the two-dimensional problem by introducing the stream function,
we may make use of Gauss’s integral in the present case. The integral to be extremized is

G = Sc 12f—¢)dS, 4.2.3)

where ¢ is any stream function by the circulation distribution 7 and f is the given bound-
ary value.

These two integrals may be equally usefull to the present problem but there is an
inconvenient point. That is, what the extremum of these integral gives is not always
the force coefficient as it does in the preceding section especially in the case of the float-
ing body. In fact, if we define

Extrem. (W)=N,= ——S p—aﬁ-dS , (4.2.5)
c on
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Extrem. (G')=G/=— S r¢dS , (4.2.6)
¢

considering g, ¢ and 7, ¢ is the correct value, since

[.l=¢+'—‘¢-— ’

3 (4.2.7)
T—_“—é_g (¢+—¢"‘> ’

where suffix 4+ — means the value at just outside and inside of C, we may calculate
them as follows;

e 5.9 9
No=Gy' = SC¢+an ds+ga¢—a7l as, (4.2.8)

The first term of the right hand side is the force and the second term the force from
the inside of C when we assume that C is a very thin shell bowl immersed in the water,
so that the force acting on the floating ship may not be estimated directly from N and
G’ except the special case. The heaving motion is one of such special cases, and we have

PETE PRI ON
- SC <z-——I1?>§Z—dS , (4.2.10)

because both (z—1/K) and ¢_ are regular inside C and satisfy the water surface condition.
Other cases are when the ship is fully submerged and the motion is translational and
then this term becomes simply the displacement volume.

4.3. Examples of Application d

There may be proposed another type of such integral, namely,

= g S ¢<—g§i—z§£-> ds. (4.3.1)

of which extremum problem is also equivalent to the boundary value problem, and its
extremum equals the force.

As an example of its utility, let us consider a semi-submerged circular cylinder of
unit radius in heaving motion with very high frequency. Assume the potential take the
following form,

o=¢1+Ads, y=rcosf, z=rsinéd,

_sing cos 26 of _af
e T T (4.3.2)
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S * g ¥ cos ky

0 k*K‘f‘#i a; J

¢2= lim
p—+0

where A is assumed as a small parameter to be determined and ¢; is considered to be
the predominant part of ¢ at high frequency®, then

J=2g1, [)— (b1, $)+2A(81, F—1)— A%, é3) , (4.3.3)
where
9
(B, $)=(s, ¢i>=—g Bi=gsdS, 4.3.0)
c 7]
then the extremum condition becomes
1 67
5 A =8 f—d)—A(de, 62)=0, (4.3.5)
namely
A:(¢2’ f_¢1)/(¢2’ ¢2)) . (4.3.6)
Putting this value into (4.3.3), we have
Extrem. (J)= fs,5=2(¢1, £)—(¢1, $1)+(gs, F =008, ¢s) . (4.3.7)
Calculating these terms, they are
T 2 T T 2
(¢1,¢1)~2+K+K2 , (¢1,f)=‘é‘+§[}‘,
4 . (4.3.8)
T
2(¢1, )—(¢1, ¢1)—'2—<1-“3;}5—E;> ,
$1—os ___1_¢1__ﬁl'e——1{z—-i1{|yl ($2, 1) = —inle—HK
T K y 2, P2)= 3
¢2, 1)== K2 € 371' 4 )
. - (4.3.9).
A;. 4 eiK<1+ ¢ eiK>
T K 3r ’
¢;:¢1—-%(1-{-—31*8"1{)6“1{””{(1_'”') .
Accordingly, we have
G 4 4 16 i \?
ﬁ,s;;(l—ﬁ—l?;)—}—me“‘@—}—gge") 4o, (4.3.10)

so that the coefficient of the added mass % may be
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k=1—

4
e e, (4.3.11)

The results (4.3.10) and (4.3.12) and the similar ones of the following example are the
same as ones except smaller terms® ! obtained by F. Ursell after very long arguments.

For the other example, let us consider a heaving semi-submerged sphere at high fre-
quency, and assume the potential as

¢=¢1+Ads,  3ffdr=—cos @

cosf  3costh—1

_ — Ty sin A
1= o oK, 0 F=rcosf,  VIlhyl=rsing=p (4.3.13)
_ (= e*Jy(krsin g) 2 27K eeires
¢2_S0 Py kdleK_m—ngh—!—\/ e
T/ 15 18 e 3 18
(b1, $)=-3 (H‘ 8K T 5K > v 2 )= (¢, ¢1)——3“<1-—‘§E-—?}5>, (4.3.14)
. "y . 2rt . 3z
(f2, §2) =20 Ktk (¢1, f—’¢1);3\/~ﬁ{% e+ AK
o S ggn (4.3.15)
TW22KS T 8rKs
TS IR — 3 —— K2R (1-p)
K- ZK2'\/‘0 4
and ) 5 (4.3.16)
Conclusion

Considering the force acting on and the boundéry value problem of the floating ship
without advance speed, we have the conclusion as follows:

There are the mutual relations between forces, dampings and the diffracted wave is
completely determined from the wave of the radiation potentials especially in two-dimen-
sional problem. The first term of the asymptotic expansion of Neumann function which
solves the present boundary value problem is of course the radiated wave of which am-
plitude is the diffraction potential and the second term is the doublet potential with ver-
tical axis and its strength proportional to the heaving potential. The variation of forces
acting on the ship by a slight change of its form is estimated if we know the velocity
around the ship surface and for example the added mass coefficient increases as the sur-
face swells slightly at the part where the local velocity is greater than the oscillating
velocity.

The boundary value problem is converted to the problem to solve the integral equa-
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tion for Kotchin’s function and the relation between the force and this function similar to
Kramers-Kronig’s one is obtained and will be usefull to the approximate evaluation of
forces and waves. ’

The method to solve the boundary value problem as the extremum of some integral
which is proposed by A. H. Flax in the wing theory and Gauss in the potential theory
is applicable to the present problem and proposes a sound basis of the approximate eval-
uation of the potential.
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