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INTRODUCTION

Although there have been many fruitful. engineering applica-
tions of the theory of the wave-making resistance of ships, it is still
not possible to completely explain the wave resistance of the usual
surface-piercing ships. The so-called order theory gives us insight
into the structure and composition of our approximate theory; however,
we do not yet have a consistent and practical theory which is univer-
sally acceptable.

The author has speculated on what would be the best approxi-
mation to our boundary value problem. In this connection, is there
a useful principle which corresponds to the Rayleigh-Ritz principle
in the theory of elasticity? The present paper will provide a partial
answer.

Our first aim is to introduce a variational principle which
corresponds to the linearized boundary value problem. This is
accomplished by introducing Flax's expression from wing theory. [ 6]

Our second aim is to find an alternate expression which will
enable us to treat blunt bodies, since Flax's method is useful only
for thin wings. Gauss' variational expression [ 24,25] for the
boundary problem of a harmonic function is introduced for this pur-
pose. This is shown to be equivalent to extremizing the Lagrangian
or kinetic potential. The resulting dynamical interpretation of the
boundary value problem is similar to the approaches of many other
authors who have studied free surface problems by using the
Lagrangian [ 3,12,13,14].

I. FLAX'S VARIATIONAL PRINCIPLE
The variational principle introduced by A. H. Flax in wing

theory [ 6] may be directly applied to our problem. Those unfamiliar
with this principle are directed to Appendix A,
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If the Kutta-Joukowski condition [6,7,8] is satisfied at the
trailing edge, we have the reciprocity relation

55 pw dx dy=g§ pwdx dy (1.4)
S S

by (A.8) and (A.24), where p is the pressure, w 1is the vertical
velocity component, and tildas denote reverse flow gquantities. The
integration is over the wetted portion of the ship hull S,

Let {(x,y) be the free surface elevation. The variation of
the integral

1= ({ o -9t - 5 axay (t.2)
S
due to variations of p and p takes the form

8 = 55 [ 8p(L, -W) - 5’13(gx +w)] dx dy. (1.3)
S

Since the variations 6&p and §p are arbitrary, the pressure which
extremizes the integral I is equivalent to the solution of the boundary
value problem (A.25) and (A.26); that is, the problem for the pertur-
bation potential ¢ with the conditions

(1.4)

on the free surface. The stationary value of I is the drag; namely,

[1] =§§S p L, dx dy, (1.5)

where p, denotes the correct solution. [6,24,26] Thus, the bound-
ary value problem is converted to a variational problem, the solution
of which is suggested by various methods of approximation. [ 6]

If we introduce the error integral,
* st
E =§§ {p - pltw - ¢,) dx dy, (1.6)
S

we see from (1.1}, {1.4), and {1.5) that
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Ak

E =D - I (1.7)

Therefore, Flax's principle produces an approximate solution which
makes the error integral (1.6} stationary. [ 23]

This method suggests powerful means for obtaining approxi-
mate solutions, but unfortunately it has been applied only to thin
hydroplanes and wings. [ 7]

II. GAUSS' VARIATIONAL PRINCIPLE
In this section, we assume there is no free surface. Then

the wvelocity potential has the following representations for the source-
sink and doublet distributions:

¢5(P)=21?S§S el as(@),  1=0,1,2,...  (20)

and

¢;(P)=7§—T;S§ ”i(Q)‘a?Tf ;-(ﬁi-—mds(m, 1=0,1,2,... (2.2
S ¥

Here, quantities with the suffix zero stand for the correct solutions
while those with other suffices are not necessarily correct, For these
potentials we have the following reciprocity relations:

ggs ¢, dS =§§s 5,6, dS, (2.3)
Sgg ”2¢|vds:§,§s ) bg, 4S5 (2.4)

53; by Pp, dS = Sgs $,9,, dS- (2. 5)

Gauss's variational principle for the Dirichlet problem states
that if we consider the functional

and

:%gg (¢ - 2f)o dS, (2. 6)
S

where
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o

f=4¢, is given on 8, (2.7) &

then the function ¢ which gives the maximum value to G is the solu-
tion of the Dirichlet problem. [9,10] This is easily verified by
making use of the reciprocity (2. 3).

In the same way, we may construct a variational principle for
the Newmann problem as follows: Let us consider the extremum
problem for the functional

= %S‘L (¢, - 2f,)p dS, (2.8)

where
f,= &y, is given on S. (2.9)

This problem is seen to be equlvalent to the present boundary value
problem by making use of (2.4).

Alternately, we may construct a variational problem by making
use of (2.5); namely, by introducing the functional

J= %S{S $(2f, - ¢,) dS, (2.10)

and taking the variation, we have

8J = ggs 8(f, - ¢,) dS. (2.11)

From this we see the equivalence to the boundary value problems.
[ 24,25]

Now, since

5§s ¢,$,,dS :&HL VeV, ar, (2.12)

where D lis the entire water domain and dT is a volume element,
a natural measure of the error of an approximate solution ¢ is

E = ;gﬁ; ((6 - o9 dr, (2.13)
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which becomes

E= %‘S‘S‘S (¢ - dbo}(d)y" ¢O’I) ds = J@ - Ji (2"14)

by Green's theorem. Here,

I, :%gg hoboy dS (2.15)
5
is the correct value. We see clearly that
6E = -~ 6J. (2.16)
Since E is non-negative, we have the inequality [ 10]
Jo= J. (2.17)

It is well-known that among all functions ¢ having a finite
energy integral, ‘

T :%5550 [VqS]z dr, (2.18)

and a given normal derivative on S, the one which minimizes T is
a harmonic function [1,4]. Accordingly, if we solve this minimiza-
tion problem, say by the relaxation method, we have the inequality

T=J. [1,4] (2.19)

(4]
This is the dual of (2.17) and we now have the variational problem

{(2.7) as an involutory transformation of the latter minimization prob-
lem. (See, for example, the textbook on variational calculus [111.)

III. A VARIATIONAL PROBLEM FOR THE LAGRANGIAN

The preceding principle can be easily extended to flow in a
gravitational field. ILet us consider the functional

L=T-7V, (3. 1)

where
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T =%§§50 [v¢]2 ar (3.2)

and
V=%S‘§ t? dx dy (3.3)
F

are the total kinetic and potential energies, respectively. L is just
the kinetic potential or Lagrangian. [ 5] Assume that the function
¢ has a given normal derivative

¢y=-x, on S and F. (3.4)

Taking the variation of L, we have

§L= -55‘&3 V366 dar +S§s b5b, dS +

55F [ 456, + {(3Ve)° - gt}ov] as.

Making use of {3.4), which is also true for the new deflected free
surface, we have

5L=-—5§§ #7°66 dT + %S‘XF pév dS, [3,14] (3.5)
D

where

p/p = - by - 2V - gt. (3.6)

Hence, if the pressure at the free surface vanishes, the
stationary value of L will be attained when & is harmonic. This
is just an extension of Kelvin's minimum energy principle. [1,4]

On the other hand, if 6¢ is harmonic, then the stationary value
of L is attained when the free surface pressure is constant and
zero. The latter is an extension of Riabouchinsky's principle of
minimum added mass. [3,14]

The variational problem can be transformed so that the con-

straint condition is converted to a natural condition. Let us add a
term which is zero at the stationary point. Consider the functional
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(a)

L+ SUFFICIENTLY

LARGE DISTANCE

Fig. 2. Riabouchinsky Modeis

where

g
]

= - ws blx, + L 4,) ds,

and

Pp = - —§§§§F dlbex + gdy) dS.

Accordingly, if we set

Pux t g, =0 on F,

which is just the dynamic boundary condition, then

and we are left with a variational calculus problem for PS .
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IV. THE LINEARIZED PROBLEM
The variational problem for Pg (3.20) is not satisfactory
since there is no reciprocity relation for this form. We must intro-

duce the reversed flow potential as was done for Flax's principle.

Let us consider the integral

L6139 = L (@20 = - %ggfo Vé,V¥, d7 - %“‘FQ'ZZ dx dy. (4.1)

Assuming that ¢, and 32 are harmonic and satisfy the free sur-
face condition, we have, by Green's theorem,

L¥(6,3) = - & S‘S‘S b8y, dS = - & S'gs $.4,, dS, (4. 2)

where S is the surface of a submerged body. This is the recipro-
city theorem for a submerged body. [ 8]

If $,= - ¢,, then

L¥(6,3) = —;—3 §s bb, dS = L(4,4), (4.3)

where

L(,4) =3 gSSD (Vd:)2 dr - %g‘g ¢? ax dy. (4.4)

*
L is called the modified Lagrangian integral [ 5]. Note that IL(¢,d)
has a finite value in the linearized case but not in the finite amplitude
case,

If S is the wetted part of a surface-piercing body which is
under the waterline before the free surface is disturbed, there is an

additional term from the surface integral. [15,16,19,20,21] The
reciprocity theorem, in this case, is

-2 fL $/Cp dy - %“s 3, dS
1w a3 § 3,08 (2.9

L%4,,3,)

i
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When ¢, = ¢, $2= $ and ,= - xy, L* becomes

6,9 =1 Bxpas +3f§ o, (4.6)

where n is the inner normal to the waterline curve L in the hori-
zontal plane. Thus, the first term in the right-hand side of (4.6) is
the correction for the change of the wetted surface S. [16] This is
justified, on the one hand, by the dynamical meaning of the Lagrangian
and, on the other hand, by the linearization procedure of the pre-..
ceding section.

For the case of a pressure distribution over the water surface,

we may integrate (4.5) by parts and make use of the formulas in
Appendix A. This results in the expression

-3 SSS ¢, Lo dx dy = %S‘gs $L, dx dy

! 7 1 -
'ZFSVSIS [p| + Pg§|]§2 dx dy = .2.55‘5‘3 [pZ + pgzzlgi ax dy.
(4.7)

L¥(e,,9,)

Thus, the reciprocity becomes [ 8]

* ~ 1 o~ 1 * ~
£ (p,sP,) =T§SS‘S p.t_’,zdxdy=-‘—2-53§s ngldxdy (4.8)

where

. B,) = L7(4,%) - —%—SS; t,%, ax dy. (4.9)

Making use of these reciprocities, we may eas ily show the
equivalence of the boundary value problem to the variational problem
for the functional I, where

r'=3 (Ss [ 46, - (4 - Bx,] ds, (4.10)
for a submerged body, and
* 1 ~ ~
I =- ———SS [ pL - (p - PIL,] dx dy, (4.11)
2p J . s

for a pressure distribution. [ 24,26]
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Alternate representations for these integrals are

I = L¥90.%9 - L (6 - 0 3~ 39> (4.12)

I =2 (posPo) - £ (P - PosP - Po) > 7 (4.13)

where the suffix zero stands for the correct solution. These for-
mulas show that the variational principle extremizes the Lagrangian
of the error and that the stationary values are just given by the
Lagrangian. : i

The difficulty arises in the case of a su’rface—pi’ércing body. .
From (4.12), the functional to be extremized is

= - 1%4,% +%§L‘ (380~ #Lo) dy + —5’§S (3 - #)x, dS. (4.14)

Taking the variation, we have the boundary conditions équivalent to
this variational problem,

¢x=-g§w$x=g&, on L, (4.15)
4’1/:":1;1/:‘541; on - S. (4.16)

But we have no knowledge of the surface elevation on L, a priori,

as this problem may be indeterminant. [17,23] We must remember
here that the solution is unique only when the detachment points are
fixed by the theory of cavitation. [3,14]

This difficulty may be avoided by introducing a homogeneous
solution for the two-dimensional, linearized case (see Appendix C).

; For the present case, we might proceed as follows: Let us
consider the difference between a surface piercing body and the

limiting case of a submerged body moving very close to the free
surface as in Fig. 3. [23] The boundary condition on the water

surface above the submerged body must be ¢Z = 0, but since the top
is also. the free surface, this is equivalent to

¢, = lx(x,y) =0 on F, (4.17)

or integrating, we have

P(x,y,0) = - gt(x,y) = Const = func (y}) on TF, (4.18)
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(a) SUBMERGED

N N
N

(b) VERYSLIGHTLY SUBMERGED

(¢) SURFACE PIERCING

Fig. 3. Slightly Submerged Ship

This formula shows that there may be a thin layer of uniform flow
over the top of the submerged body.

When this layer moves with the body,
¢x(X,Y:0) = - gg(X:Y) =-1 on ..F, (4'» 19)

and we clearly have the case of a surface-piercing body.

On the other hand, the boundary value problem of a submerged
body is equivalent to the variational problem (4.10). After solving
this problem, we may calculate the surface elevation over the top
water plane by (4.18), but it will differ from (4.19), in general.

In this case, it might be necessary to introduce another potential
which satisfies condition (4.19), in addition to the above potential.
This procedure may not be practical because the treatment of the top
water plane is difficult.

In this case, it would be more convenient to consider the follow-
ing two boundary value problems: Let us split the velocity potential
into two parts, :

b=6 b, (4. 20)

with boundary conditions
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$x =0 on L
(4. 21)

¢p=-x%, on S

{2 = Lp= {0, given on L

(4. 22)
<§>2"=O on S

The corresponding functionals are of the form (4.10) for ¢,
and of the form (4.14), without the third term on the right-hand side,
for ¢,

For the present case, {,, must be equal to 1/g by (4.19);
however, in general, it will be arbitrary and, perhaps, a constant
of the form (4.18). ¢, is called the homogeneous solution. [18,22,
26]

Finally, it should be noticed that the Lagrangian is closely

related to the far-field potential. For a submerged body, we have,
from the boundary conditions, (A.9), (A.11), and (4.3),

B=- SSS xx, dS + 2L(¢, )

2L(¢,¢) +V, (4. 23)

where V is the displaced volume. For a surface-piercing body,
interpreting condition (A.10) as a correction for the real wetted
surface, we have

S‘S‘S x$,ds + é—&_ x¢, dy =V, (4, 24)

where V is the displacement volume under the still waterline.
Therefore, we can write (A.11) as

B=V+2L%¢,% + 3, (4. 25)

where ¢, and ¢p are defined by (4.21) and (4.22), with {,5=1/g.

For a pressure distribution, we have, from (A.18) and (4.8),

B = 2p8(p,B,) (4. 26)
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where p, is a homogeneous solution, as is ¢,, and T,=1/g.

Since B is also a measure of the total 1lift, this formula shows that
the homogeneous solution for the constant surface elevation influences
the lift, as we have easily verified by the reciprocity (4.8). [ 26]

It should be noticed that, in this case, the condition A =0 in (A.18)
insures the continuity of the planing hull.

" Kotchin's function (A.17) is also given in the form

H(6) = - S:S'S $x, dS - SL o L dy + 2176, %), (4. 27)
where ’E,F:d has the boundary values
Edu ==y, om S
and (4.28)
gly= b4 =~ 0 om L

Edis called the diffraction potential. [ 23,26] Here, the second term
of (4.27) may be omitted as in (4.25).

For a submerged body, there is no integration along L and
H may be written as

H(®) = - SSS (6o + B9x, dS. (4. 29)

Finally, for a pressure distribution,

H(6) = 29" (p,B,) (4.30)
where
T =-Lo. (4.31)
d g Tex

V. CONCLUSION

We have presented two variational principles for the boundary
value problem associated with the waves of a ship advancing at a
constant speed: The first is Flax's principle, which makes use of the
stationary character of the drag. This principle is useful only for
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planing boats or for submerged thin wings. [6,24] The second is
based on Gausz’s principle, which converts the boundary value prob-
lem to a variational problem. This method is shown to be an exten-
slon of Riabouchinsky's principle of minimum virtual mass. [3,24]

The latter principle is based on the stationary character of
the Lagrangian and has recently been used by Luke, in a more general
form, to study water wave dispersion problems. [3, 12,13] We
also have analogous principles for light and sound wave diffraction
and for the radiation of energy due to the heaving, swaying, and
rolling oscillations of ships. [25,27,28,29,30]

The variational principles emphasize the dynamical meaning of
the boundary value problems and permit us to solve them a proxi-
mately by the Rayleigh-Ritz-Galerkin procedure. [ 6,28,29] How-
ever, when we try to apply these principles to our problem, there
are two difficulties:

The first is that our system is not conservative because of
the trailing wave. This may be bypassed by introducing an artificial
model, as in Fig. 2, or by introducing a reversed flow for the
linearized case.

The second difficulty is for the surface-piercing body, in which
case the wave profile is not known, a priori, even in the linearized
case. This difficulty may be avoided by introducing homogeneous
solutions [ 27] which appear in the case of 2 surface pressure distri-
bution. [ 26]

Finally, although a variational method does not neces sarily
represent a new method of analysis, it does suggest new methods of
approximation. For this reason, it may be useful, especially for
engineering purposes,
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APPENDIX A
The Linearized Velocity Potential [2,23]

Let us consider the flow of water around a ship S, taking the
coordinate system as in Fig. 1 and the velocity of the stream at up-
stream infinity to be unity.

\\\

\
\

> X
(FREE SURFACE) | (UNDISTUREED)

} LN UNIT
/

J——
Q

/ VELOCITY

(WATER REGION)

N N

Fig. 1. Coordinate System

The pressure p(x,y) on the water surface is given by

%p(x,y) = - &,x,y,0) - gblx,y), (A.1)

in the linearized theory, where p is the water density; g, the
gravity constant; {, the surface elevation, and ¢, the perturbation
potential (d¢= - udx - vdy - w dz), The suffix stands for differ-
entiation.

The kinematic condition on the water surface is

¢,(x,y,0) = £ (x,y). (A.2)

Since the pressure on the free surface is constant, the potential
must satisfy the condition

¢xx X,y,0) + g‘bz(x,Y:O) =0, (A.3)

A solution which has a source singularity at a point Q and
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satisfies the above water surface condition can be expressed as

k(z+z Yoik{@e T
4mS(P,0) = 5 o fum [ (" aedo
l‘(P,Q) r(P,Q _—) '—"+0 0 k COS - gtul cos 6

‘ (A.4)
Whers P= (X_:Y:Z)} (X 'Y :Z,): —Q-* ( :Y s~ ): (P, Q) ‘?Q
and w=xcos 6 +vy sin 6, w' =x' cos B +y' sin 6. Hereafter, we

will call this the fundamental singulamty. This solution approaches
the following values. asympto’clcally

i i i
S(P, Q) —— - {——(———-7 +—-——-——__} , (A. 5)
x>>x! (P, 0 (P, Q)
w/2 ~ AU

o9 sec0{(z42") +i (@ )}.s .

S(P,Q) ——s &Im c?0 de. (A. 6)

x<<x! ¥ “rr /2

By considering the integral
Sy[cby(a)s(P,Q) - HQ)SUP, Q)] ds(Q)
about a point P in the interior of the fluid, we have the expression
P) =§S . [4,S - ¢S,] ds.
Since ¢ and S satisfy condition (A.3) on F, we have, finally,
(P) =S§S [ $,(Q)S(P,Q) - $(Q)S,(P,Q)] dS(Q)

- é—S.L ’[ Q)5 (P, Q) - $:(Q)S(P,0Q)] dy', (A7)

where L is the curve on which F cuts S.

When the water motion is due to a pressure distribution over
the water surface, we have

$(P) = ——-S.S‘ p(Q)S,, (P, Q) dx' dy’, (A. 8)
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where we have used (A.1) and integrated (A.7) by parts. We have
also assumed that the potential and surface elevation are continuous
over S and F, including L.

Making use of asymptotic characters (A,5) and (A.6) of S,
we obtain the asymptotic expansions of ¢ as follows:

2nr
where r = PO and
- 1
A —SS'S $,dS + gS‘L ¢, dy, (A.10)
B={{ lox-alas-1( 1o-xe]ay.  (ann)
S gL

The expression for A may also be written as

A =§§S¢V ds - %S‘&: b, dx dy =§Ss 4, dS +§§F ¢, dx dy, (A.10")

by using (A.3). Thus A is the total outward flux from the water
domain. This must be zero; otherwise, we would have a large source
of the resistance other than from the wave and splash,

We also have the kinematic condition on the surface of the ship,
$,=-x, on S. (A.12)

Therefore,

S'gs ¢, dS = - SS; x,dS = 0, (A. 13)

where S is the wetted surface of the ship below the undisturbed
water surface. From (A.10) and (A.13), we have

1 = - =
ESL b, dy = SL ¢ dy = 0. (A.14)

But this condition is not adequate in practical cases. One way to
avoid this difficulty may be to take the real wetted surface as S.
On the other hand, for the consistency of the theory, it may be

567




Bessho

preferable to take

X
p) 35T 3.3 B, (A.9")

instead of (A.9).

Far downstream, we have

#(p) =T -;O-’r- Im 5:: be(P, 0)H(0) sec®6 do, (A.15)
where
$o(P,0) = exp [ g secze(z + iw)] (A.16)
and

H(6) =ﬂ; [ 6,9 - ddg,] dS - é(‘. (90, = Oyd,) dy.  (A.17)

For a pressure distribution, we have simply

A=20

and : (A.18)
-1
B = PgSSs p(x,y) dx dy,
where
H(6) = —ng p(x,y) b, dx dy. (A.19)
pPgJ Jg T I Tex

If the flow direction is reversed, the conditions corresponding
to (A.1), (A.2), and (A.3) are as follows:

%E(X:V) = 5;(&%0) - glix,y), (A, 20)

Ez(x,v,o) = - Zx(x,y), (A.21)

and
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gxx(x,%o) + gEz(X:Y,O) =0, (A. 22)

so that the fundamental singularity is the same as that for the direct
flow, except that the wave follows on the downstream side. This may
be expressed as

5(P,Q) = 5(Q,P), (A.23)

we also have

ch(P:Q)

i

5,(Q.P). (A. 24)

The boundary conditions for this case are

-~

$,=-$,=%, on S, (A. 25)
‘and
Ezz-—\;z-qu:w:-gx on S. (A. 26)
APPENDIX B

The Progressing Wave

Let us obtain the solution for a periodic progressing wave,
moving at constant unit speed, by the variational method of §3.

We take the form of the complex potential to be
¢ + iy = - ia exp (kz - ikx), (B.1)

where the origin is on the undisturbed water level.

The integrals to be evaluated are

1 n/k o
P=M-T-V, —M=-S. de ¢y dz,
P -w/k -0
(B.2)
1 1 1 2
1r=2(( ot axas,  Lv- gl e,
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where 2w/k is the wavelength.

Assuming a surface disturbance of the form,
{ =b +ccos kx +d cos 2kx, (B.3)

and integrating the expressions for M, T, and V, we have

2
%M = mea[ 1 + k(b +3) + 5 (c® + 4b® + 24® + 4pa)] ,
2

T=T2 [1+2kb + k(c +2b° +d) + k%2 + @), (B.4)

o |-
)

o
I

V=7 (c2+d2+2b2).

Wﬂ

Differentiating P with respectto a, b, ¢ and d, and equating
the derivatives to zero (by the principle (3.16)), we obtain the follow-
ing stationary values, neglecting higher order terms:

22
= a(l +-—5—ka),

Cc = 8
bt O,
(B. 5)
1

d=,»-2-ka2,

g/kl—;i—kzaz,
k . P 2 3.22
Z-T—T—T-,-zgc(i-!'-‘i-kc),
k . pg 2 i.22
K oo K om 1y Pg.24
Zmt e (T- V)5 ke

8

These expressions agree with other well-known results. [1,2]
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,, - APPENDIX C ‘
5 4 A Variational Principle for the Stream Function

In the two-dimensional case, we may use a stream-function
instead of the velocity potential, Let us introduce the stream
function as follows:

bylx,2) = Up(x,2), dy(x,2) = - §(x,2). (C.1)

Then, the boundary conditions for { become
Yy(x,0) - gh(x,0) =0 and  §,(x,0) - gh(x,0) =0, (C.2)
Yolx,2) = - Po(x,2) = -2 on S, (C.3)

t(x) = - U(x,0) and ET(x) = W(x,0). (C.4)

Introducing a modified Lagrangian integral,

.

* ~ o~ ~
L (g5 = -3 S‘\D Vi Vi, dx dy - %S‘ £,t,dx, (C.5)
F i
we have, directly, the reciprocity

L0, T = LY@, )
(C.6)

S 41,1132,, ds =S J‘2‘1’11, ds
S s

In particular, from (C.3),
¥ ~ ~
Lg,) = - 4 Ss G, dS = - S; zy_, dS = .;_S‘ Yoy, 45
S

=3 S‘S.D (v%)a dx dy - %SF goadx = LYo, Yo). (C.7)

The variational problem with the function
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I = L*(‘Po:mo) - I—-*N‘ - lIJo:tP - "T‘o)

¥
%Jf

%S' (W, - Yol - Tl dS. (C.8) i %
S

is equivalent to the boundary value problem for Y. Here, the
boundary values, Yo and Yo, are given by (C.3). Since a stream
function has an arbitrary constant, we should also consider the
modified problem with boundary conditions

Yo = - “I‘o = C: constanton S, (C. 9) '

which is the homogeneous problem. [ 22]

If condition (C.9) holds, the surface elevation at the fore and
aft ends is C (instead of zero for the condition (C.3)), but the x-
component of the velocity at the same points is -(1 +gc), by (C.2). :
Hence, the water flows in and out the body unless C = - 1/g. Thus
an adequate condition for a surface piercing body is

b

1 s
— on So Co 10 ®
g { ) '.

Throughout this section, we have treated a class of functions
Yy and { which are finite and continuous everywhere. As long as
the integrals considered exist, the method may be applied with some
minor changes to other classes of functions.

The question of the uniqueness of solutions will be left to the
future.
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