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Abstract

The fundamental singularity which is a velocity potential of water motion by
a pulsating singularity in & uniform stream with free surface must be evaluated
to study the theory of ship motions in a sea way.

It is represented by a double Fourier integral in usual, but may be reduced
to a single integral form which is an aim of the present paper, so that its analytical
property may be facilitated to discuss or compute its numerical value.

1. Introduction

It is necessary to study the theory of oscillation of ships in a sea-way to compute a
fundamental singularity which is usually represented by double integral.

This ig only inconvenient for numerical computations but difficult to estimate its analy-
tical properties in various cases.

The present paper aims to convert this double integral into a single integral so that
such study may become easy.

The method is similar to the one used in the case of steady and non-oscillating problem®
and somewhat sophisticated one but it is justified by the differentiation after obtaining the
result and agrees with the latter in its limit,

2. Derivation and Definition

The velocity potential at Pz, ¥, z} of water motion by a unit source pulsating with
circular frequency o situated at Q(x’,4’,2’) in a uniform stream with unit velocity is a
harmonic function and satisfies at the free surface the condition;

[(i ~2V+ aa%]G(P, @ler=0 2.1

where the co-ordinate system are taken as in Fig. 1 and g stands for gravity constant,
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and, as well known, is represented except

time factor expiwt, as follows: Jz/
Y
171 1 N
P, Q) -—4"("'1 ’r:) /%0 UNIFG X
+oT@—o', y—v',2+2"), 2.2 ~ oW -
Fig. 1. Co-ordinate system.
where
_ i 1 {7 (Texp[kz+ika()kdkds
T, y,2)= .lf.%ws S Ak, 6) , 2<0, (2.8)
Ak, @)=(k cos §—a)*—gk+ie(k cos f—a) , _ (2.4)

&(6)=2x cos 0+y sin 8, r,=PQ and r,—=PQ§ where § is an image point of Q with regard to
the free surface.
Hence, it is sufficient to consider the function T and additionally its following derivatives.

(‘i&) - a—aﬂ;) T(xl Y, z) =S(x| ¥, 2) ] (2-5)

a%T(wi ¥, Z)=_Sg(m, Y, Z) ] (2-6) |

In another point of view, the function S is a velocity potential of a point pressure on
water surface and S; the surface elevation?’.
The function T satisfies the following differential equation throughout the water.

I:('iw —%)'+ ga%]r(m, po=—L, @)

where r=+z*+y*+2%, because we have an integral representation:

T:—iS" rexp Uoz-+ika@)ledhds ,  2<0 .
r 2r —zJo
These functions are all even with regard to y, that is,

S(w! —¥4 2)=S(CU, Y, Z) ] (2.8)

T(ﬁ‘}, —¥, 2)= T(ﬂ?, b’ 2) ’ }
Selz, —y, 2)=S:lz, ¥, 2) ,

Therefore, it is sufficient to consider only for positive y.
On the contrary, for negative x they have radiating terms and if we define the follow-
ing function as:

Tolz,y, =Tz, y,2)~T(—2x,9,2) 2.9)

where the bar over the letter stands for complex conjugate to be taken, we may ecaleulate
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the funetion T for negative x as,
T(—z,9,2=T@, v 25— Tulx,v,2), (2.10)

so that it may sufficient to consider only for positive z in the following.
Now, by its definition (2.9), T, can be written as,

1
Ak, 6) ]

T (2, 9, 2) =I;1:TY: dBS: exp [kz—ikis(0)] [ n (; == kdk | @.11)

and since A can be decomposed as

Ak, fy=cos® Hk—c(@YHE—x' ()} , )

i% [(w —325-) c0s 0+ (1:': \/ m)]sec* e, h @12)

0 the integration in k of (2.11) becomes only
x(g X the ones around its poles in the k-plane as
shown in Fig. 2.
x(e) )c(e)

i) 4ewgg,cos8>0 i) hw<Q,cos8<0
4w >g ,~Qfhw<casf <0

x @ Y S
\\ .
A \\Yt\ X

i) 4w>Q,c0s8 < -G/fbw g;EIETD

Fig. 2. Poles in k-plate. Fig. 3. Direction of incident wave.
Caleulating residuces, we have

il .
Tue, 4,9~ S_‘[m @, , 2; <(6), 6)c(6)

dﬁ
\/ 1+ —coa @

— $.(8,9,% #/(0), 0'(0) sm (con ) | : 219

where
(%, ¥, z; k, 8) =exp [kz-+ik(z cos +ysind)] , (2.14)

In the latter integral of the right hand side, the range where cosu>g/dw, if exists,
must be excluded.

To obtain more clear image of these trailing or radiatiating waves, let us consider an
incident wave coming from the direction ¢ with the encounter circular frequency o and
wave number & as in Fig. 8.
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exp [ik& ()} +-1wl] , (2.15)

where § means time,
The relation between the encounter frequency and the one of the wave in fixed co-
ordinate is

w,=w—kcosd, (2.16)
and since w,=+gk, this gives the relation:

L

vi—_Yg 4
Vg =VEk= —m[mz ,\/1+ 7 %08 a:| , 2.17)
Comparing this with (2.12), it is easy to see that

@=vgld), w/=vgE, (2.18)

where o, is the other root of (2.15).

Therefore, all the waves of (2.18) are the waves having the encounter circular frequency

3. Integral Representation

In the integral representation of T' (2.3), we may also write it by the substitution of
integration variables:

keos@=p, keinf=gq, kdkdé=dpdg, (8.1)

like as

T(w,y,9=— lin Lo
|[ exple VI i+ awidpdy
—= (p—0)—gVDi+gt+icp—o)
; (8.2

Then, their poles lie on lines in p—gq
plane like as in Fig. 4.
Moreover, substituting g to

g=|p|sinhv, (3.3)

Fig. 4. C g of singularity in lane. .
'€ Hrves of singwiarily In g plan we may write (8.2}, as follows:

1 S S +2exp [|pl(z cosh v+ 4y sinh v) + ipe]ip| cosh vdvdp

T,y =—F i @—a)'—g|p] cosh v - ie(p—w) ) (3.4

4"_.2
abbreviating the letters to take the limit.
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Putting

z=—ps8ind, Yy=pcosd ,
that is, (8.5)

2z cosh v+1y sinh ¥=1p sinh (v+4J) ,

and since the poles in the complex v-plane are given by

cosh p=B=)} 4, P—0)

3.6
T T ®.6)

and lie as in Fig. 6, referring to Fig. 5, we may shift the path of integration in v to the
horizontal line (—i8) or (z—1% according to p positive or negative in the complex v-plane
with residue at poles in this domain surrounded by both lines, and we have,

|" ;" coshV =-(£-l")—l
1\ 4uy/g= 2’/ 9 IP' = i ® ©
2l Th--” —p>0 A E & ® &
-_——— p <0 "4
- $ -5
BE ® ® 0 0]
|
O] ® @ s ®
2 -;{L@ @
B @ @ ©
® ----0<=iPl<do O -0 P < Xo
A - Lo =|Pl< Xo A Xo<P <Xb
B - Ap <19 @--Ka<P
Fig. 5. Relation Between » and p. Fig. 6. Poles in v-plane.
T=Ty+Tz, 3.7
T— 1 SS“ exp [(z +p sinh #)]p cosh (u—id)dpdu (3.8)
T it )) e (0—w)*—gp cosh (u—id) '
71 {S“ﬂ' 3 S“ }exp lipz-+(2/g)(p—e)*—(y/g) vV p—w) —g*pl(p—w)'dp
B 2rig | ) —w —3 vVip—a) —gip*
_1 S*o exp [ipe+(/g)(p—a)* +w/g) VP = (p—ol](p — o)*dp
2r0 320 v g'p'—(p—w)
41 {S‘ﬂ_ S"“ \exp [ipz+(2/g)(p—w)*+(y/g) vV p—w)—g'ptl(p—w)dp
2zig lYo  Jeg) Vip—w) —gtpt
+ LS‘*J'exp lipe+(2/g)(p—w)*—(y/g) v g'p’— (p—o)'|(p—w)’dp 3.9)
Cyys r3 ] R
219 ), vgipi—(p—w)

where



100 M. BessHo

2 ertlon )
5’ }-—w—l—z(IZF 1+g ,

(3.10)
A,
Y }=—w + —g—(l¢ \/1— %) .
The last integral can be written also, changing the variables, like as
(p—w)=gtptcosht, (3.11)
or
V'(t) g T ’
=) — +—2- 1+ 1——cosecht eosht, for p<—o’ or —a<p<0,
: (3.12)
={/J(t) }= i( \/I—I- —cosech t) cosht, for 0<p<ew or w<p
#it) 2 )
1dv or Li_=$ ginh ¢
v dt V' dt Jl— 4—‘”(:osech t
(3.13)
, .
—l—f—;‘tg or l,%—= -+ leht ’
# # J 1+ 7 cogech ¢
we have
To— i S“’ exp [iu{z+p sinh (¢4-18)}p(t)dt
Fanig ) dw
# 1 +? cosech ¢
r exp [ig'{x+p sinh (t—i8)}]p’(t)dt
2ng ) \/1—1— %" cosech £
+ —1— " lexp [is{z—p sinh ({—18)}b(t)+exp [—iv’{z—p sinh (E— 8}/ (1))
ng —cosh™1 (dalg)
x dt , (3.14)

\/1— %” cosech ¢

On the other hand, since the poles of the integrand of (8.8) lie like as in Fig. 7, the
integration in p gives

T =L{S°°‘“ - S“""‘“l exp [ipe o sinh (v+i8)Hu(v)dy
"2 Uea T \/ 1+ ] cosech v
g
+ 2,;1%;8 ¥ explig’{z+peinh hiv+i6)} e’ (fv)dv 3.15)

¥t ‘jl—i— = cosech v
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Fig. 7. Poles in p-plane.
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where #,=sinh™* x/p, deforming the path of integration appropriately to a semi-circle of

inifinte radius according to (x+psinh u) iz positive or negative.

Thence, shifting the paths of integration of (3.15) and summing up (3.14) and (8.16),

we have finslly

T@ye= 1 S—“u_“ dt

2ig ) J 1+ %"cosecht

X [exp [ip{x+po sinh (£+10)}]u(t) —exp [¢p/{x+ psinh (+48)}H ' (2)]

i —cosb1 (4w)g) dt

2rig ) ‘/1-—— %” cosech t

¥ [exp [—1v{x—p sinh (E+18)}1t) +exp [— i/ {z—psinh (t+ i8] (E)],
Differentiating this, we have by the definition

S(z, ¥, 2) = zl(ﬂé_ + -y—)

z\rp® g
+ _“0_“-d—-t—{exp [te]plw—p)—exp [1 | (w—p)}
27!'9 —o v #
7T o [— i)+ exp [~ W)}
ZEQS—m Wexp e+l texp [~ W (@ .
Silz, ¥, 2)= 1 {ry—izz)*
1 r 2MP‘

i [ : i
ﬁg ﬂs&%‘it-{em [ip]e*—exp[ig/Jp'?

i [ —ocoshl{iwlg}
E;—ﬂ’s o ' cof?thiit {exp [—ivpi+exp[—i/ "t}

(8.16)

{3.17)

(3.18)

where the exponentisl terms and the root terms in the integrands are the same as the ex-

pression (3.16) but abbreviated.

Differentiating once more and summing up them like the differential equation (2.7), we



102 M. BessHO

can verify that the obtained representation (8.16) satisfies it. This result justifies the
preceding deformation of the integral.

Lastly, to compare the representation (3.16) with the wave term (2.13), changing the
integration varible ¢ to # like as cos ht—=sec?, we have

p—xj2—1e
P m g
TG Jo-x \/ 14 -Ecosﬁ
X [$ol, ¥, 2; £(B), O)6(6)—Bo(x, ¥, 2; £'(6), 6)«’(8) sgn (cos A)] , (3.19)
] where g=tan¥(y/x), e=sinh(l2l/vZ*+¥")
| ? and a=cos"}g/dw).
— K(B)-WAVE 21 4o .
1f ) = K(6)-WAVE fx , 4 4. Asymtotic Property in Far Field
. 14 1"
[ N ’_Dr‘,::.’.'.'_y\z It is well known that these function have
NI ,;{;l}z"“‘ = A s ,;"_..-;u" = - . four wave systems far from the origin,
P 2 " which are dominant terms.
i -1
v Refering to the literature?’ with respect
Lwa=1y v 2 to their real form, we reproduce here only
Fig. 8. Points of stationary phase. points of stationary phase of integrands of
(2.13) and (3.19) in Fig. 8, that is, points
Y _ sinfcosd

' for x-wave,
o Jl—i— % cog @—sin®d

(4.1)
B —sinfcosd for &'-wave
T 4w s aa ’
1+Fcosﬁ+sm g
corresponding to, when z2=0,
[ (& . -
5[ e }(a: cos 8-+ sin §) ] 0, @2

Hence, as is well known, the function T (8.19) has no wave up-stream side when 4a>g,
because there exists no stationary point, but the integral between (—=z/2) and (p—=n/2—i¢)
has a contribution and

T(e,y,0)5—,  for z,y>1. 4.8)
2ngr

For negative #, by the formula (2.10), we have

1 — Il!(_wl i, z) 1] (4-4)

Tz, y, z)=.2m
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and T, of (2.18) may be evaluated by the method of stationary phase.

5. Special Value

There is no difficulty to put x and z to zero in expressions (8.16), (8.19), for example,
we have from (3.16),

(0, 9, 0)=%?.—§" {exp iz sinh t]u(t)—exp [ip'y sinh )’ ——=rl
§J-w ,\/ 1+ i cosecht
osh—1{{w
El,_g" I oxp [ivy sinh £]u(£)+exp [iv'y sinh £1/(2) ‘:f . G
TG J e \/1— 7cosecht

Of course, there is no jump along the y-axis and the wave term becomes the imaginary
part of T by (2.9):

T,00, %4, 0=T(0,y,00—7(0,4,0), (65.2)
and from (2.13)
T,(0, 9, 0) =2—"§ [exp [—4xy &in 8]x(8)—exp [—ix'y sin 614'(6) sgn(cosen—-—‘jﬁ,:— . 63
g = ,‘/1‘[' -0—0080

On the other hand, if we put ¥ and z to zero, in the expression (8.16), first integral
tends to the negative infinity because u,=—sinh™! 2/p tends infinity and its limiting value
becomes indeterminate.

Therefore, we may put z to 0, that is 6=0 at first and then take the limiting wvalue
for y=0.

Since p(¢) tends to zero for greater ¢ and

— ’ ’ 1 ’
lﬂos o exp [ip (t)(m;l-wy ginh t)]p (t)dt=:£1; , (5.4)
o0 ‘J 1+ G cosecht
we have
1
T(,0,0=7—
{(2,0,0) -
+ 1 —eosh—L{4w!g) { [ 4 ] (t)—|— [ 34 ] ’(t)} ot
21:1'-9'5_« exp [—#pz]u(t) +exp [—i/z]v 1— 4 -
-5 cosecht

For the wave term T,, there is no difficulty for this limiting process.
Lastly, other expressions (3.17) and (3.19) will be discussed in the same manner as the
above, but it may be aasier to obtain by the differentiation of the above expression by
defenitions (2,6) and (2.7) like as
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S(z,0,0) =('iw— a'?c—)T(”’ 0,0,

(5.6)
-—_1_ Ly — -—a_
S!(wp 01 O) g (TJGJ am)s(ﬂ", 0, 0) y

6. The Funection for Steady Case

When o tends to zero, we have the case of steady and non-oscillating problem.
Then, we see from (2.12) and (8.12)
x@)=0, dOsg sec‘B—%sece ,
(6.1)
pH=u(t)=s0, p'=v=geoshi.

Therefore, we have at first from the definition (2.3)

T(a, y, 2) = 1 S' =exp [kz+ikai)dkdd ©6.2)

4 ) .o keos®@—g+iccosd ’

and from the expression (3.16)
s F—uy—13
T=éin_§ i exp [4g{x+ sinh t —iz cosh ¢) cosh £] cosh tdt
xlgd
+2;—S "’ exp [ig{—2 1y sinh t—iz cosh t) cosh ¢] cosh tdt . (6.3)

The last expression agrees with the one obtained in the former paper of the author?,
who defined like as

T(x, y,2)= —11}—0‘.‘3(115, ay, —gz2) . 6.4

7. The Function for the Case withoui Advance Speed

When the advance speed becomes zero, it means that g tends infinity but e*/g, say K,
stays at some finite value, we have from (2.12},

0) = 9;}=K . H@)sgsectfsoo @.1)

Putting these values in the expression (3.20), we see the second term of the right hand
gide has no contribution and we have
K S?—tfﬂ—ic

lgT{(x, ¥, 2)owe = =

P exp [ikR coa (f—¢)+k21de , 7.2)

—r=—1oo

where R=+zF§* .



On the Fundamental Singularity in the Theory of Ship Motions in a Sea Way 105

Deforming the path of integration in the complex #-plane, we may integrate it respec-
tively as the following portions,
p—x{z—is -ty e—xl2 P—xit—iz
| =| 4 : (1.3)

—~x—ico —x+p—ix p—x P—xi2

and we have

(T }pmn= g‘;—.ex-ffu ‘=>(KR)—I§ex-{H.,<KR)— Y.KR)

+ _K— oFs S—sinh"l R

oi exp [—KRsinh v]dz . (7.4)

o

This agrees with the well known expression in this case®,

8. Conclusion

As we see in the precedings, the fundamental singularity, which appears in the theory
of ship motions in a sea way can be represented by a single integral, otherwise it is done

by a double integral.
This is based on a simple reason. Namely, 8ll such functions are harmonic so that

they must be represented by a double Fourier integral like as

1 L
f(z,y, Z)FTFS SeXp [z Vp*+ ¢ +ipz-+iqyl F (p, @)dpdy , 8.1)
but they must satisfy also the free surface condition (2.7), se that » and ¢ must satisfy
the relation:

(p—of=gvp*+g¢*. (8.2)

Therfore, the above double integral means substantially 2 simple integral, or we can
say that all such functions can be represented by the summation of the elementary solution

exp [zV P+ -+ipatiqy] , (8.3)
in which p and ¢ satisfies (8.2).
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