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ABSTRACT

An inverse procedure for minimizing the hydrodynamic drag of a body is
proposed. The distribution of optimum body deformation vector is determined
in each iterative step by solving an integral equation.

The method is applied to the axisymmetric Stokes flow for obtaining the
optimum shape with the volume specified. Other various restrictions for
length, beam, and moments are also taken into account., Numerical results and

+ discussions on the optimum shapes including two-dimensional cases are made in
the paper.

The present method can be applied to other flows like Oseen flow, cavity
flow, and boundary layer flow, if the flow and the drag are determinable by
specifying the body form. The concept of this method will even be applied to
the problem of ship viscous resistance optimization.

NOTATION
a Reference length B Body breadth
C Body contour in (x,r) plane o Constants (i=1,2,3,,,}
D,D Region outside, inside of body E Dissipation energy integral, or
H Function of W and W* elliptic integral of 1st kind
i,j,k Suffices (1,2,3) in 3-d coordinates or (x,r)} in axisymmetric coordinates
k variable of elliptic integral K Elliptic integral of 2nd kind
1i Direction cosine of a plane L Body length
n Normal to body surface P Pressure
P Reference point Pi Kernel function for pressure
Q Reference point . r Radial axis normal to x
R Resistance or distance PQ =) Tangential along contour C
5 Body surface ti Stress in fluid or on body
Tk 3 Kernel function for stress u Velocity =(u1,u2,u3)
14
uy Velocity component Uy 3 Kernel for velocity
: r
v Volume of body v, 3 Kernel for velocity in (x,r)}
* r .
W,W functions in kernels X longitudinal axis
) Yj Kernel for vorticity in $ 2, s Kernel for vorticity in 3-d
direction ' coordinates
o Angle of n to x Yij Velocity gradient tensor
Pk 3 Kernel for ¥y § Prefix for variance
’
Gij Kronecker's delta E Infinitesimal sphere at Q
u Viscosity & angle in peripheral direction
P Angle in elliptic integral z Vorticity
1. INTRODUCTION

In the field of ship wave resistance, a variety of inverse methods for
the inprovement of ship hull form based on linear theory have so far been
established and is widely used. In the viscous resistance problem, on the
other hand, ordinary orthodox methods have still mainly been used, in which
trial and error approachs are made for improving ship stern hull form.

Nevertheless, there have been a few inverse approach in this field.

Nagamatsu et al. [l] made a minimization of the viscous resistance using a
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two-dimensional boundary layer equation and a direct search method. Besshg
i{2] made an optimization of the frame line configuration on the basis of the
minimum crossflow energy in a cross section of the hulil. Hess [3] alse

established a minimization of the viscous resistance for two-dimensional apg

axisymmetric bodies by using approximate solutions of turbulent boundary
layer equation.

Recently in ship structure field, Bessho [41,[5] has developed a neyw
theory on a plane stress analysis. He expressed the problem by an integray
equation like the boundary element method, and established a new treatment gp
a case of small deformation of boundary. He applied the theories to the
problem for cbtaining an optimum boundary shape of mimimum stress concentra-
tion. Bessho's method can easily be applicable to the flow problems like
Oseen flow, cavity flow [6], and boundary layer flow [7]. The present work
is an application of his thecry to the three-dimensional Stokes flow.

An inverse approach for mimimum drag in Stokes flow was discussed by
Tuck [8] on the basis of a slender body approximation. Pironneau [9] showed
a general expression for the optimum condition with a prescribed volume,
which gives a constant vorticity on the optimum body hull. Bourot [10]
obtained numerically an axisymmetric optimum form based on Pironneau's
scheme. Sano and Sakai [11] also showed a two-dimensional soluticn by using
FEM and gold division method. The optimum shapes become elongated forms with
finite edge angle.

The present method gives a different approach to this problem including
the cases with variocus additional restrictions as well. The authors [12]
have already treated the case of two-dimensional Stcokes flow. A three-
dimensional analysis is presented here. And numerical examples are shown for
axisymmetric flow,

2. BASIC INTEGRAL EQUATIONS FOR STOKES FLOW

Before we preceed on the inverse
problem, an ordinary method for obtain-
ing the Stokes flow field with a pre-
scribed body shape is first stated n
here. We take the coordinate system in u
three dimensions as shown in Fig.l, and —
velocities and lengths are normalized D
by the unifeorm velecity U (=1) and the
reference length a {=1). The pressure
P and the stresses are non-dimension-

X3

X
alized by pU/a, and the resistance by 2
ula.
X,
The basic eguations in three-dim-
ensional Stokes flow are expressed in
the form,
2 2 .
8 ui/axj =3p/3x; . 3uj/3xj=0 (1) Fig.1l Coordinate system in three-
in which u is a perturbation velocity dimensional domain,

component. The boundary conditions are
prescribed as

u, = -U, u, = u3 =0 on 8. )

As is well known, the pressure field is harmonic and the wvelocity can be
broken into potential and viscous parts. The stress t; on a plane with the
direction cosine 1j is represented as the form,
t, = t..1. (3)
1 131
where the stress tensor t

is related to the velocity gradient tensor
and the pressure.

ij

= ¥y.. - .. R . = . . . . 4

tij Ylj pdlj, Ylj le aul/ax] + auJ/Bxl (4}

A reverse theorem for Stokes flow.can be derived as in the following.
Let us consider twe flow fields with the velocity vectors u = (u,,u,,u,) and

s s 177273
u' = (ui ,ué ,ué ). We here introduce a bilinear form E,
r — ]
E(u,u') = (1/2)fff YigY'i58v (5)
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in which the form E corresponds to the dissipation energy in the flow if u =
2'. Integrating eq.(5) by part gives the reverse theorem. .

E(u,u') = - [f use'yds = - I u' t.as (6)

In the case u=u', applying the boundary condition eq.(2), we obtain the form,
E{u,u’') = E(u) = U [[ t,d5 = UR (7)

which shows that the dissipation energy directly corresponds to the resist-
ance of the bedy.

We proceed on the expressions for the flow field. Assuming the flow u’
in eq.(7) is created by a singularity at a point Q and using the expressions
for the kernel functions in APPENDIX, we can derive the following expression

assuming the surface integral consists of the body surface and a small sphere
surrounding the singular point Q.

u (@) = - Jfluy(P)T, S(P,Q) - £5(P)Uy 4(P,Q)]AS(P) (8)

We also assume the flow ceases inside the body D.

/I ugtPITy 5(P,QIAS(P) = 0 (9)

combining egs. (8) and {9) we finally obtain the expression for +the velocity
field,

(@) =[] £5(P)Uy (P, 0)dS(P) (10)

where summation is taken for the suffix j. The application eof the boundary
condition (2) to eq.{(10) leads to the integral equation for the stress dis-
tribution tj on the body surface, which can be solved by use of the kernel
functions in APPENDIX. Then the pressure p and the vorticity £ can be
obtained by differenciating eq.(10}.

p(o) = [f t4(P)P;(P,Q}AS(P) (11)
£l = ff t4(PIZy 4(P,Q)AS(P) . (12)
where r n
Dy = Uy /0%,y - duy /8%, (13)
for i = (1,2,3) c
The conversion of the flow guanti- x
ties inteo an axisymmetric coordinate \
system (x,r, & ) as in Fig. 2 can be }
made. Assume the coordinate transfor- $ X=X |
mation as in the form, :
¥X.= rcos$, x.,= rsin®, x.= x {(14) f
2 3 1
then we obtain the transformations for /
the velocity (ux,ur,O), the stress (tx'
tr,O), and the vorticity (0,0,%).
v = u;, U= uzcos& +u35in8 Fig.2? Axisymmetric coordinate system.
tx= tl' tr= t2c053 +t351n8 (15)

L = ;3cos& - czsin&
Applying these guantities to egs.(10) and (12), and integrating the kernels

along the peripheral direction (§), we can obtain the expressions for the
velocities and the vorticity in axisymmetric flow,

u (Q) = fctj(P)Vi'j(P,Q)ds(P), for i = x,r (16)
£(Q) = Ictj(P)Yj(P.Q)ds(P} (17}
where sum is taken for j=x and r, and the integration is made along the con-

tour line C on the plane (x,r) as shown in Fig. 2. The kernel functions Vi, j
and Y§ can be expressed by the elliptic integrals of the first and secon
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kinds as stated in APPENDIX. The integral equation for the flow is deriveq

by applying the boundary condition eq.(2) transformed into the axisymmetrje
coordinates to eq.(16).

We can also show a conjugate relationship between the pressure and the
vorticity on the body surface. Transforming the stresses ty and tr in the
directions of x and r into those tp and tg along the normal and tangential +g

the line C, and using the continuity equation and the boundary condition, e
can derive the simple form.

L {18)

Finally we can determine the Stokes flow field by using eq.(l2) or eq.
{16). The case of the two-dimensional flow can be treated in the same way

[12], although the kernels are different and the flow is subject to the gg-
called Stokes paradox.

3. BOUNDARY DEFORMATION AND DRAG MINIMIZATION

If the variation of resistance due
to a deformation of body shape should
be obtained, we could inversely deter-
mine an optimum deformation so as to
minimize the resistance. 1In particular
should the deformation be quite small
and be linearly related to the resist-
ance variation, the solution of the
problem would be quite simple. The
present procedure is a kind of linear
analysis and was first developed by
Bessho [4]1,[5] on a plane stress prob- 8
lem. And it is here applied to the
three-dimensional Stokes flow.

As shown in Fig.3, we assume the
body surface & associated with the
velocity u and the resistance R deforms
by an amount of dn to the surface §'
with u' and R'., Denoting the variance
of the velocity and the stress compo-

nents as Gui and Gti, we define them as Fig.3 Deformation of body.
fellows,
Su, = fur.l. - [u.]
i i's i's } (19)
= ¢ -_
§t; = [efylg - It lg

where the deformation 8n is assumed to be small and the flow u' around S' _be
analytically continued +to the region around 5. We then expand the velocity
u' arcund S ‘and substitute it into eq.(19) to obtain the form,

su, = -(3u',/an}én = -(3u;/dn)én + O(sn?) (20)

where the velocity gradient along the normal can be expressed by the vorti-
city by use of the boundary condition eq.(2) and the continuity equation.

(8ug/3nlg = €ipy 340 = B340 lin (2%’
In the above the suffix i takes cyclic value of (1,2,3). 1In the axisymmetric
case, eq.(21) can be converted by the angle a in Fig.2.

6ux = ¢én sin(a), Su_ = - ¢én cos(a) (22)

The resistance variance &R is defined from eq.(7) as follows,
= - = ' - ' 3,
SR ED,(u‘)) ED(u) [ED(u )] ED(u)] + EGD(u ) (2
where the variance of the domain 8D = D'-D. The first term in the righthand

side of eq.(23) is transformed by use of the reverse theorem eqg.(6), and
eqgs.(3),(4),(20}), and (21) into the form.

Eylu') - Ej{u) = - II(tjcuj + uybty )ds
= -2 J[snt (au /an)ds = 2 ffcjzénds (24)

21:4



rhe second term in eq.(23) can be expanded to the first order of §n.
vy o= 2 _ 2
Bgplu') = (1/2) I (g5 §nds = ff;j dnds (25)
rinally we obtain the form for the resistance variance,
SR = II Cjz nds (26)
which is completely the same to Pironneau's result [9].

We next consider the problem of the resistance minimization. The opti-
mum condition is expressed in eq.{26) with a veolume V constant, i.e.,

v = [ énds = 0 (27)

the solution for this is clearly the form,
;jz = const. {28)

which means the absolute value of the vorticity should be constant on the
optimized surface. Therefore an axisymmetric body {{x =ty = 0) takes smaller
resistance than an optimized three-dimensional body. In the former case,
taking only the vortiecity g in the peripheral direction & , the optimization
conditions are expressed as follows.

§R = L:rczands = 0 {29)

§v = 27 &:rsnds =0 {30}
Then the solution becomes

c2 = C0 { = const. ) on C. (31)

The constant vorticity condition for the elementary optimum form also holds
in the two-dimensional case [12].

The solution technique for eqs.{30) and {31) should then take an itera-
tive scheme, in which an improved value for ©&n is solved by use of the vari-
ances 6u and 6z from their initial values. Replacing ¢ to r+8f in eq.{31)
and retaining up to the first order term, we obtain the form.

8z- CO/(ZC) = - 1/2 (32)

The relationship between 6n and &z can be derived by taking variance of -egs.

{(16) and (17) in connection with the variance Gti of the stress ti on the
body surface.

Gux J (6txvx’x + éSter’r Yds rén sin{a) {33)

Su
r

[ (St v+ 8tV )ds = -zén cos(u) {34)

P X rr,r
The variance of eq.(l7) associated with eq.(32) gives the form.

st = f (6t,¥, + 6t Y )ds = Cp/(22) - t/2 (35)

The set of egs.(30),33}),(34) and (35) represents the simultanecus integral
equations for the unknowns of dn, §tx, 6ty on the body surface. By solving
the equations numerically we obtain the improved value of the deformation én.
The kernels are already available at the stage of the flow calculatien so
that no more calculation for the kernels is needed, although the size of the
equations increases by about one and a half amount of those in the flow cal-
culation. After solving 6én and deforming the body, the flow at the new stage
is obtainable by solving eq.(16) on the surface, then by using eq.(l7} to
obtain the vorticity. Eg.(18) can also be used to check the wvalue of the
vorticity on the surface.

Finally we consider about additional restriction conditions. Eq.(31)
for constant vorticity on the body surface would not hold with more than one
restriction condition, so that it should be necessary to increase freedom for
the vorticity distribution. Since any longitudinal asymmetry would not con-
tribute to the drag minimization as can be seen in eq.{29}, we consider here-
zfter only the symmetric body in fore and after parts and then assume the

orm.
2 2 4

g5 = cp + CpxT o+ CoxT + L (36)

21:5




r
L.

gy

The unknowns Cj should be taken by the number of the restriction conditiong
Substituting eqg.(36) into eq.(29), we can see that the additional N

unknowns C

", and C2 correspond to the additional specification for the higher order
moments of the displacement distributicn, as follows.
. i rénx’ds = o, J rénx’ds = 0 (37)
The body length L can be specified as the form,
[ én ]r=0 =0 (38)
and the breadth B as
[ én ]x=0 = 0. (39
Various kinds of any other restriction can be added in a similar way, For
the iterative procedure eq.(36) can be transferred into the linear form.
§g = - [ Cy + Clx2 + sz4 1/(2¢)y - ¢/2 (40)
All the preceding discussions in this chapter also hold in two-dimensionaj

case [12}.
4. NUMERICAL PROCEDURE AND CALCULATION RESULTS

Computations are made for axisymmetric and longitudinally symmetric
- body. The after part of the body contour is devided into N (=15) panels in
{x,r) plane, and uniform distribution of the stress ty and ty on a panel ig

assumed. The numerical iterative procedure is stated in the following.

(i) Give an initial body shape like sphere, ellipsoid or a polynomial,

(ii} Calculate the panel configulation. Let the control point be at the
panel center.

(iii) Calculate the kernel functions Vi,j(P,Q) and ¥4(P,Q), which is ex-
pressed by wuse of the elliptic integrals in APPENDIX. On the self inducing
panel (P=Q}, a singularity treatment should be made. The order of the singu-
larity is logarithmic or the first pole so that the singular part can be
integrated analytically and the rest by using Gaussian integration scheme,

(iv) Solve the integral equation (16), and then determine the flow
quantities like the pressure, vorticity and resistance.

{v) Solve the integral equations (33) to (35) with any additional rest-
riction condition to obtain the optimum body deformation én.

(vi) Judge the convergency according to the absolute value of &n.

{vii) 1If convergence is not attained, deform the body and return to the
step {ii).

Preliminary calculations for the present method were carried out by
using a 8-bit home computer, PC-8801 (NEC) with the operating system CP/M and
the FORTRAN compiler, which takes about 2 hours for one case including four
iterations. A relatively large computer AC0S-700 (NEC} at the University of

Osaka Prefecture was also used for the series calculations consuming about
one minute for the one case.

The results are discussed in the following. Fig.4 represents the ele-
i mentary optimum shape with the volume specified as a constant ( = an/3),
which completely coincides with Bourot's result f1o0]. The edge angle 15
nearly 60 degree which is the exact solution as stated in Pironneau's paper
[9]. The resistance decreases to the value 17.98 from 67 (= 18.83) in the
case of sphere. Fig.5 shows the distribution of the vorticity which 1s
nearly constant for the optimum shape and is -({3/2)sinla } for the sphere.
Fig.6 stands for the pressure distribution on the surface.

Instead of specifying constant volume, the case of the length L speci-
fied as a constant (=2) is solved as shown in Fig.7. The shape is the same
to the volume-specified case, since the vorticity distribution is assumed tO
be the form in eq.{31). The case when the breadth B is prescribed also Ppro-
duces the same shape.

Fig.8 represents the case when two conditions are specified, like the
length and the breadth. When the breadth is prescribed to be small, the
optimum shape give rise to an inflexion near the edge like a 'swan neck.
Fig.9 illustrates the results for the volume and the length specified. The
case of the prismatic coefficient Cp and the length specified is also shown
in the figure. These shapes shoud be similar to those in Fig.8 since the two
conditions are specified by using eq.(40). Figs.10 and 11 show the case ©
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three restriction conditions, i.e., the length, beam, and Cp. When the con-
dition is prescribed to be apart from the original elementary optimum shape,
unnatural results appear. The half edge angle keeps the value of &0 degree
for all cases.

An example of the authors' results for the two-dimensional Stoke flow
{12] is shown in Fig.12. The optimum shape is quite similar to the
case. The half edge angle in this case becomes 51.3 degree which is proved
py the author in a similar way to the Pironneau's three-dimensional case.
Fig.13 shows a comparison of the elementary optimum shapes normalized by the
maximum half beams in the different kinds of flow. It can be seen that the
solutions of the two- and three-dimensional Stokes flows are quite close to
each other, and that they are also close to the soclution in which an empiri-
cal turbulent boundary layer formula (Hess [3]) is adopted for the resistance
prediction and the optimization is made for the ocuter potential flow (Bessho
[7}). Fig.l4 represents a comparison of the normalized Cp curves. The pre-
sent result Dbecomes quite close to parent ship forms, like the aft part of
Taylor series (0.6 Cp) and the fore part of Series 60 (0.6 Cp). Although the
comparison itself seems meaningless, it is quite interesting to see the fair-
ly good coincidence among the theories based on different flows and the act-
val ship forms.

present

The present method gives a technique to solve the inverse problem for
obtaining optimum shapes under various resitrictions once the method for pre-
dicting the flow and resistance will be established. It is therefore hopeful

to apply and modify the present method for the improvement of actual ship
forms in the future.

u Resist. Mark Shape
—_— 18.83 ———— Sphere
1?0 — 17.99  ceeeee- Ellipsoid
T 17.98  —0— Optimum

flow.

.

-1.57a &
4 &
AA s °* L » 2
. [ . L3 -+ O )
A
-1.01 & L}
¢ A sphere 4
(§=~%sina) 4 .
-0.5] 4
» ellipsiod 4
© optimum L .
I
0 v T T T
0 0.5 1.0 1.5 «x 2.0

Fig.5 vorticity distribution.
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2,04 4 sphere(pz-%cosu)
¢ ellipsoid

P © optimum

-1.041

-0, 51

Fig.6 Pressure distribution.

ep=0.6,L/2=1.0

1] 0.5 1.0

Fig.9 Optimum profiles with volume and
length specified.

0.5 (B/2=0.473)

%= =1.0 specified

0 )
0 0.5 x b
Fig.7 Optimum profile with L
specified.
B/2=0.6

original
L/2=1.0(with B free)

0.5

)

0 0.5 1.0

Fig.8 Optimum profiles with length
and breéadth specified.

—=—=—u original{L/2=1.0)

0.5

Bf2=0.473

T
0 i 0.5 1.0

Fig.10 Optimum profiles with length,
breadth and CP specified
(B/2= 0,473).

—w=—-—L and B specified(almost same as A & L spec.)

Case of Area, L and B restricted lies between

the cases of A f Land L & B spec.

0.5, 2
Y L specified
(same as Area specified
1 -
——-— Area and L specified
cpr.S
0 0 :
T L v n ) 5
0 0.5 1.0 0 1 z * 3 ‘

Fig.ll Optimum profiles with length,
breadth and c specified
(B/2= 0.4), P
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Fig.1l3 Comparison of normalized Fig.l4 Comparison of normalized
optimum shapes. Cp curves.

5. CONCLUSIONS

An optimization technigue which was proposed by Bessho [41,[5] in a
plane stress analysis is applied to the three-dimensional Stokes flow. The
analysis and computations for drag minimization are made for axisymmetric
flow. Conclusions will be as follows.

(i) The present inverse method consists of an iterative scheme in which
the flow is first determined by prescribing the body shape, and secondly the
body is deformed slightly so as to minimize the resistance. These two steps
require to solve integral equations.

(ii) The elementary optimum shape with a volume specified coincides
with Bourot's result by multipole expansion technique. The shape becomes an
elongated body with about 0.47 beam-length ratio and 60 degree half edge
angle and with a constant value of the surface vorticity.

(iii) various kinds of restriction condition can be included .in the
present procedure. ASs the number of restriction increases, unusual shapes
may appear when the shape becomes far from the original elementary optimum
shape.
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APPEYDIX. KERNEL FUNCTIONS

Let the coordinates of the points P and Q be xj and x'4( i=1,2,3 ), and
the distance between +them be R. Then the singularity for the pressure isg
exprassed in the form.

Pj(P,Q) = (1/4n)(3/axj)(1/R) {Al)
The corresponding form for the velocity singularity becomes,

= 2 -

Uk,j(P'Q) = (1/8w) (3 R/axkaxj) ij/(énR) {A2)
and the singularity Tk,{(P,Q) for the stress tyx in the direction of k in the
plane with the normag defined by 1 = (xj- x'i}/R can be derived from egs.
(3) and (4):

Ty, 3 PrQY = 10Ty gy = Pydyy

where summation is taken for the suffix i. For the velocity gradient tensor
the singularity becomes the form.

§..) {A3)

Fk,ji = aUk’j/axi + BUk'i/axj {nd)
Substituting egs. (Al) and (A2) we obtain
— -_— 1 - 1 4
4n Tk,j(P'Q) = 3(xk b’ k)(xj x j)/R . (A5)

The surface integration around a small sphere ¢ at the point Q gives the
form.

[Ty, 3¢P.Q1AS(Q) = &y (26)
e r

The vorticity singularity is derived from the velocity.

Zk'j(P;QJ =39 - 98U /8%

Uke1, 7%k 42 k+2. 37 %k+1

In case of axisymmetric ccordinates, we integrate the singularity expre-
ssion along the peripheral coordinate § from 0 to 2n. Let the superscript '’
concern with the point Q ( 8' = 0 ).

(A7)

Ve, x(P1Q@) =1 Ju; 1 (P,0)as = r(a%w/ax?/2 - W) (a8)
Vx,r(P’Q) =r I(U1’2c053 + U1'3sin8 }dg = razw*/axar/z (A9)
V,,x(PrQ) =1 [(U, jcos 8' + Uy sin §7)ds = -raZwr/axar'/2 (A10)
Vr,r(P'Q) =r I(U2'2cosScos&' + U, jcosb'sing + U3'2sin8'coss

+ U3'3sin8'sin8 yds = -r(azw*/arar'/z + H)- (A11)
Y AP:Q) = r W r', Y (P,Q0) =1 H/ x (al12)
Wwx = [(R/41)d% , W = [1/(4nR)d% (A13)
H = jcos& /({47R)A% = YW/ r' - 3W*/ar/r!' {n14)

In the above, the subsequent functions W and W* can be expressed by the first
and second kinds of the elliptic functions E(k) and K{(k) in the following.
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r22 = (x—x')2 + (r+r‘)2, k2 = 4rr'/r22 (A15)
W= (ry/m [(1-k%sin’9) M 2dg = (k) /5 (16}
W= 1/0mr,) J-k%sin®e)™ a0 = k(K /(nr,) (A17)

As the point P approaches to the point Q, the term k tends t0 unity and a
legarithmic singularity appears in K{k).
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