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SUMMARY

Reciprocity theorems are introduced into the two-
dimensicnal steady Navier-Stokes flow.

They could be useful to estimate approximately the
resistace, frictional or pressure and other forces in
the same way as Rayleigh-Ritz or Galerkin's method.

They give also the representation of Navier-Stokes flow
field which was originally obtained by C.W.Oseen.

The boundary integral equation to solve the
boundary value problem are discussed, proposed an
iterative method to solve them and shown, for a thin
cylinder, the relation to the boundary layer theory.

The approximate solution for a flat plate are
given, which gives the frictional resistance very close
to the Blasius one.

1. Introduction

In general, Oseen flow is a good approximaticon of
real flow qualitatively in laminar region but wrong
quantitatively and, for example, it gives the drag of a
flat plate about two times higher than Blasius formu-
lal4]). However, his original scheme was by so-called
Oseen kernel to express Navier-Stokes flow field of
which equation is assumed as non-homogeous one of
Oseen's linearized one [1]. We could hardly find the
study in this method actually, but the mathematician
used to this method by making use of Stokes kernel
instead of Oseen's[2].

In fact, Oseen's equation is not self-adjoint so
that we could not define non-negative metric of func-
tions like as in Stokes eguation in which we could taken
the dissipation or kinetic energy integral as such metric.
This difficulty could be detoured by introducing a

reverse flow, that is, a flow in which the uniform flow



is reversed or of which equation is adjoint to the
original flow.

Thus, at first, introducing a bi-linear functional
similar to the dissipation inteqgral, we get the
reciprocity between Navier-Stokes, Oseen and potential
flow.

This reciprocity gives many useful formula to estimate
the forces acting on the body and also the general
representation of veloecity, vorticity and total
pressure.

These may be useful to a recent trend to solve, Navier-
Stokes flow numerically by the so-called boundary
element method [5].

When we consider a very thin body, it will be
confirmed that the theory would be consistent with the
boundary layer one and a flat plate resistance is
calculated approximately and found that it is nearly
equal to Blasius one at the second approximation [6].

2. Equation of motion and boundary condition

Let us consider Navier-Stokes flow around a
cylinder in a stream of the unit speed taking the co-
ordinate system like as

y
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e (x,y) - vW?u = vg

P
v=ulh (1
% Gy(x,y) - vWlv = -(1+u)C
p
Gix,y) = p + 3{(1+u)? + v2} ' (2)



C(xly) = Vx = uy [) {3)
and the equation of continuity

u, + v, =0 r (4)
where the suffix means partial differentiation.

Differentiating and adding both equation (1) and
using the continuity, we have alternatively two
equations, namely,

& V%6 = (o), - (supg)y (5)

2

VITL = () 4 {(M+udgly, = (T+u)g, + vTy (6)

On the boundary C of a cylinder, the velocity must be

u=-1 , v=0 on C (7)

and the equation of motion {1} becomes as

G =p
Py = - uCY r Py = HE on C (8)
or Pp = - Hoy Pg = MZ,

where n means outward normal and s the distance along C.
The forces acting on the cylinder are given in the
following form.

X=- PX, + ULxg - 2uvs
{(9)
Y = - py, + ULYg + 2uug

so that the last term of both formula can be omitted by
the boundary condition (7).

Now, the eguations (1) are not self-adjoint so that we



may need adjoint solutions to discuss their properties.
Thence, let us introduce a reverse flow field, that is,
a flow in which the uniform flow direction is reversed
and quatities related to this flow may be shown by the
mark {(~ ).

The equations of motion are

1&, - v = 9t

(1')
16 - vy = —(u-1)C
5 Gy vV oy (u-1)%
= e ~ 2 ~2 '
G =p+3 {(u-12% + +v*} , (2")

that is, inall equations the sign of uniform flow must
be changed, and boundary condition

u=1 , v =0 on C (7%)
Lastly, we define the stream function as
wx = -V s U, = U

} (1o
2y

I
1
Ty

3. Reciprocity 1[6,8]
Let as introduce a functional ;

E(u,u) = UJJ [ 2(uxﬁx+vy§y)
D

+ (ugevy)(uy+v,) 1 dxdy (1)

This is similar to the dissipation integral but has no
physical meaning and serve to introduce the reciprocity
of flow.

Differentiating partially and using the equation of
motion and continuity, we may write (11) as



E - JC[ G{u,n) - uZ(u,s) 1 ds
+ DJJ gzl va - {(1+u)¥V | dxdy ’ (12}
D
and alternatively
L) r A -~
E = J [ G(u,n) - vZ(u,s) ] ds
c

+ DJJ 1 Yu - (@-1)% ] axdy , (13)
D

These formulas must be the same, that is,
J [ p(u,n) - puz(v,s) - plu,n) + vZ(u,s) ) ds
C
= pJJ [ Z{¥u - (u-1)v} - g{ vu - {u+1)¥} ) dxdy (14)
D

This is the first reciprocity.

Secondly, if the reverse flow is a linear Oseen's
and we have instead of (13)
B = J [ (p+pu)(u,n) - uZ{u,s) 1 ds
C

+ DJI Lv dxdy . (15)
D

Equating this to the formula (12), we have the second
reciprocity ,

I [ plusmn) - HZ(u,s) - {p + %(u2+v2)}(ﬁ,n)
C .

+ UZ(u,s) + D(uﬁ+v§)xn 1 ds

= pj[ Z{vu-uVv) dxdy , (16)
D



Thirdly, if the reverse flow has a potential like

as
G=8, , v=20 ' (17)

and E vanishes by (13), then we have third reciprocity

from (12) as follows ;
J (G$n—UC$s) ds = DJJ clet+u)v - vil] dxdy , (18)
C D

Lastly, if the reverse flow is a degenarate Oseen
flow which is defined as its frictional part and the

reciprocity becomes, like as {16),

J [ —uz(u,s) - Gms - UCmn + D(uﬁ+v§)xn ] ds
C

f

pfj L (vhy+ub ) dxdy ' (19)
D

4, Velocity field [6,8]

In the second reciprocity (16}, putting Oseen's
kernel as the reverse flow and after some
manipulations, we have the following representation of

Navier-Stokes flow, namely,
b(@) = 1 [ p(RIRG(P,Q) + 1z (P)K,(2,Q) 1 ds(P)
cC
]
* Jf C(P)[ V(P)K,(P,Q) + ulP)K,(P,0) ] dxdy(P)
D

(20)

Hence, we may have by direct calculation,



1 ¢ ]

where

1 (x'
K(P,Q) = z_nf . { log R + ¢{(P,Q) ] dx". (22)

0 for x' <« x
$(P,Q) = Kg(kR) ek(x'-x) {]? - kly-y')? (23

ﬁe 2(x'-x)

Here, it is noticed that ( Zdxdy) is a circulation
around an area element so that p( Zdxdy)x(u,v) is a
Kutta-Joukowsky force acting on the fluid element.
Thus, a stream function is represented by forces acting
on the fluid multiplied by Oseen kernel.

The velocity field is clearly compeosed by two
components, that is,

P o= P o+ wF PR g uf + uf y V= vP 4 oF (24)

r

P 1 d_ a_
u-(Q) LT C( Pan - Ml3g ) log R ds

+_1-JJ | V%ﬁ - u-%y-) log R dxdy r (25)
27 D

ds

Flo) = =L
wF(Q) = Z“DIC[ X(2kos0,) + YO, ]

|
J

sl 80 vizke+o,) + ugy ) dxady (26)

‘D



P 1 9 J
V(Q)——-—-J(pas+ uCa_n)longs

2'ITD C
2
+2—1 ” ( v@ + u%;) log R dxdy R {(27)
m D
F - =1 -
P = 2L Ic( Xo, - Yo, }ds (28)

At first, comparing (28) with (27), we have

vg = vb , | (29)

Secondly, by making use of the reciprocity (18) and
the logarithmic potential as the reverse flow, we have

- 9 8
G(Q) - % = -211; I [ GIPF, - ulhs ] log R ds
C

9
- %ﬂ”c[va—;- (1+wds 1 log R dxdy  (30)
D

and that, putting the boundary condition (7}, we have

L 3

EJI Cg}log R dxdy = u{Q)} . (31)

D

Then, comparing (30) with (25), we have

.g_ = u - uf = dF (32)

raj—

+u=-12._uP,onc, (33)

and then Ppp 15

Putting (26} into the right hand side of (32) this
expression is an alternative form with (30).
Lastly, in the same way as (30) ; we have

1 3
o IIDfZElog R dxdy = -v(Q) ' {34)



Then, adding this to (27) side by side, we have

o 2
VS = vy =V -v =2_“.6IC(paS+U{;an)long5

! 3
. g8 9
- 2n IJDC[ Vay + (1+u)a—x ] log R dxdy ’ (35)

This is an alternative expression with (21),
Now, in far field outside the wake, the velocity

has a potential, as is well known, and it becomes as
follows from (20).

PPy » 2 g & L logr+;Tré(My—xN),(36)

2Tp 2mp
where X =r cos 9O y Y =r sin B .
1
D = 3[ Xds + P Lv dxdy = X ds ,
C D C

(37)

[
[}

%J Y ds - pJJ zu dxdy J Y ds ,
C D c

The double integral terms vanishes, as easily verfied,
The coefficients of doublet terms are

M = 1—[( XX - Yy ) ds + DJJ E( vx + uy } dxdy ,
P e D

(38)

N = %—I( Xy + Yx ) ds + DJL Z( vy - ux ) dxdy ,

c

By applying the theorem (18) to the domain surrounded by
C and C' which is just outside boundary curve of
frictional wake and on which the total pressure is

constant and the vorticity vanishes, we have



M = Jj gy dxdy = JJ [ vy - yvZy ] dxdy
D D
= | Cuvg-venras (39)
C!
N = -J{ zx dxdy = J { X vy - ¥ % ) ds
Ct

D

These are well-known expressions for the potential flow.
On the other hand, far aftwards in the frictional

wake, the dominant termwill be u and that

wf = o), (40)

by (36), so that u may equal the frictional term uf

and it becomes by {26)

w uf = - kD J -
u s u X TTp¢11+ ZTTJIDZ;( 2kd uqay)dxdy (41)

This first approximation is to he

PRl &
wp) = - %fg;; e 2%, (42)

and then, putting this into the double integral term of
{41), it is of the order

Kk, kv
;(g)e X a1, (43)

that is, this vanishes as small as the potential part
{40) , so that this may be neglected in this stage of
approximation.

Therefore, the approximation (42) may be valid in this

stage.



The observed wake distribution may be represented in a
similar form except that the kinematic viscosity is
replaced by the eddy one [3].

This means that the actual wake zone is much broader
than the one of steady Navier-Stokes flow.

5. Boundary integral equation and boundary layer theory
The boundary integral equations are give by (20) to
{28) and may be written in the following form.

=}
H

AL X ) + ARl & u),
(44)

[
1

B.( X ) + Bpl &5 u ),

where u = (u,v) and X = (X,Y) .
These equations must satisfy the boundary condition (7)
on C and be consistent in the whole fluid.

They are non-linear so that the iterative method
may be used practically in any way and the first
approximation may be taken as Oseen flow.

That 1is,

u

o = AclXg)
(45)

Lo = BolXy)

For example, one’ of methods is to proceed iteratively as
follows :

Uy AC(XN) + AD( CN_‘} H Uy |

(46)

tn = BelXy) + Bploy_q 5 uy ),

The first equation of the above is quasi-linear, can be
solved, gives u, and X, and the second one gives the
next approximation of wvorticity.



This method of numerical solution, so-called
boundary element method, has now started and there are
few reports but it must become of the important method
[5].

Now, if the breadth of a cylinder is very narrow
and then these eguations must contain or be consistent
with the boundary layver theory, therefore let us
consider these relations,

At first, for a very thin cylinder, we may write the
equation (35) approximately as follows, after some

reduction,

= v - v =- 1 ! B—mlongx
vg = - _1“Cay

_%T”D[ (1+u) L + v £, ] log R dxdy  (47)

Just outside thin boundary layer where the velocity
vanishes, the stream function must be zero, so that it

may become
VP=V=-(Y+6);\(' (48)

where y means offset of the boundary and 8 the thickness
of boundary layer. This is ordinary approximation [31].
On the other hand, the integral of the right hand

side may be estimated there by its residue as follows .

8
I C+vwW) g+ vT, Jydy =Vo| y_p o (49)
0

because the logarithmic kernel varies more slowly
compared with the vorticity.
This is the same equation as von Karman's momentum

integral as easily seen [3].



Therefore, our boundary integral equation contains the
boundary layer theory in the limit,

Moreover, taking up the equation (30), we may have
following approximation in the same way,

_ P

=—1—Ll

s
P y=0

1
2

1
-1 d_ 3
o J_1 [ Py log R + uCg; log R ] éx

— 3 9
- oy JJ [ Zv - (1+u)33 1 3% log R dxdy , (50)
D

Putting the equation (49) into the above, we have the
same formula as (33).

P =
- u 0=

y= *

1 . {51)
2

olo

Then, adding this to (26} and taking up dominant terms,
we have as the boundary eguation,

1
+ oq I[D( 2kvd® - u Qy )¢ d=xdy , {52)

This equation may determine directly the frictional
stress by an appropriate methcd.

For the simplicity sake, we will estimate a flat
plate resistance.
Oseen solution of a flat plate is as follows [4];

20
VAl



nZ

1 2 _n*
v = [omk(tax) (V- eV ) = o (1ax) 0 (53)

2
2k n? , ky
T =~/ n{1+x) © ' N = 2(1+x)

Then, we put these values into (52) except that ¢ is
multiplied by a constant A and integrating approximately
by using the asymptotic expansion (23), we have

A = .568 , : (54)

The flat plate resistance of Oseen flow is given as
follows [4,6];

D 4 2,257 VL
Cp = pLv? = /7R = /R + R=-=" =4k (55)

where L means its length.
Therefore the above value A gives the second

approximation;
Cp = 1.281/VR , (56)

This is to be compared with Blasius value 1.328 and 3.5%
less than that [6].
This result may encourage us and show that the present
theory might be reliable.

Lastly, the pressure resistance may be integrated
from (51) as in the boundary layer theory.
In the present theory, we have the other formula (18)
but in this case the pressure resistance becomes zero
under the situation where the equation (49) is valid
[(31.



6. Conclusion

For two dimensional Navier-Stokes flow, we have
introduced variocus reciprocity theorems and represented
the velocity field and total pressure by making use of
Oseen kernel and logarithmic potential.

The reciprocity theorem may be used to obtain various
approxXimation like as in Rayleigh-Ritz or Galerkin's
method.,

The bounbary integral equation may be solved

iteratively by converting it into quasi-liear one.
When a cylinder becomes very thin, these equations gives
von Karman's momentum integral equation and the other
one to determine the frictional stress, namely, the
present theory in this limit contains the boundary layer
theory.

The similar studies have been carried out in three
dimensional flow and two-dimensional periodically
oscillating flow and they give us many interesting
results [7,8].

For an example, we could discuss oscillating wake
behind a cylinder and estimate its Strouhal number
approximately [7],

Thus, the present formulation is useful not only
numerical computations but approximate evaluations of
various guantities of a real flow.
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