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ABSTRACT

The present paper deals with an inverse
problem for obtaining optimum body profile with
minimum drag in two-dimensional Oseen flow.
The flow quantity is at first represented and
determined by integral equations using Oseen
kernel function and taking stresses on the body
surface as variables. Then the variation of
the drag due to a slight arbitrary deformation
of the profile is calculated and expressed in
terms of the flow quantities and the deform-
mation vectors on the surface, also in an
integral representation. A Newton-Raphson type
iterative scheme 1s proposed to obtain an
optimum distribution of the deformation vectors
for wmimimizing the drag. The treatment of
multi-restriction condition is also described
and several numerical results are shown.

NOMENCLATURE

Area of body profile

Half beam

Breadth

Body contour

Coefficients

External domain

Integral for reciprocity theorem
= 1/(2v)

Modified Bessel functions

Half length
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L Length

n Normal coordinate to surface

N Number of segments

P Pressure

P,Q Points (x,y) and (x',y")

Pi Kernel function for pressure

T Distance from P to Q

R Drag of body

Rn Reynolds number

8 Tangential coordinate along C
Ts,Tn Stresses in s and n directions
u,v Velocities in x and y directions
u Uniform Velocity

Ui,vi Kernel functions for u and v
X,¥ Coordinates of point P

x',y' Coordinates of point Q

X,Y Stresses in x and y directions

Xi,Yi Kernel functions for X and Y

used in ship design.

Zi Kernel functions for vorticity
B Beam-length ratio = B/L

8 Prefix representing variation
v Kinematic viscosity

P Fluid density

4 Vorticity

Superscript ' Different flow field

Superscript *
Subscript n,s

Reverse flow quantity
Derivatives or components
in n and s directions
Derivatives w.r.t. x and y
Natural number (1 or 2)

Subscript x,¥
Subscript i

1. INTRODUCTION

In the field of ship wave resistance, a
variety of inverse methods for the improve-
ment of ship hull form based on linear wave
theory have been established and are widely
In the ship viscous
resistance field, on the other hand, very few
work has been done yet, hecause of the diffic-
ulty of evaluating the viscous resistance
itself. The present work is an attempt of
fundamental approach to the inverse problem of
drag minimization in Oseen flow field.

In early time Bessho (1) showed a method
of minimizing crosswise potential flow energy
in a2 ship section which was assumed to be
related to ship viscous resistance and obtained
optimum frame line configuration. Hess (2)
proposed a scheme for obtaining optimum body
shape in which he used Squire and Young's
formula for evaluating wviscous resistance.
Nagamatsu (3) applied direct search method for
the same optimization problem in which he used
boundary layer calculation to determine the
drag. Nowacki's recent work (4) also seems to
be along this 1line although he applied his
optimization technique to evaluate optimum ship
dimensions with ordinary hull form. Such a
method of nonlinear programming based on a ship
boundary layer caleculation will become a useful
tool of practical ship design.

On the other hand, it would alsc be inter-
esting to wmake fundamental analysis on drag
minimization as a pure hydrodynamic problem.
Recently Bessho (5) developed a scheme for
optimizing boundary shape in boundary element



method in plane stress analysis and applied it
to the problem of finding an opimized boundary
shape with least stress concentration (6}). The
method was applied to a flow problem by Bessho
and Kyozuka (7) to obtain a cavity shape. They
also applied the method to a drag minimization
problem based on an empirical boundary layer
type formula to obtain optimum shapes in two-
-dimensional and axisymmetric flows (8,9).
Bessho and Himeno (10,11) also applied the
method to two-dimensional and axisymmetric
Stokes flows to find optimum body shapes. The
present work 1s an extention of the method to
two~dimensional Oseen flow.

After Oseen's original work (12), Oseen
flow has been gtudied from various points of
view, for instance, Filon's infinite Reynolds
number flow {13), Imai's solution (l4) by
multipole expansion method, Miyagi's integral
equation method (15), and so on. Attempts of
expanding WNavier-Stokes equation by the use of
Oseen's kernel function have recently been made
by Bessho (16,17,18,19) and Kida (20). There-
fore study on Oseen flow seems still to be
useful for the understanding of viscous fluid
flow.

The procedure of the present inverse
method can briefly be stated as follows. The
first step is &an ordinary method for solving
the flow quantities and the drag on a prescibed
body shape by {ntegral equation. The secod
step is an inverse procedure in which the devi-
ation of the drag due to a small deformation of
the body shape is formulated and then inversely
the deformation is solved so that the drag is
minimized. The third step is an iterative
scheme to deform the body profile and to return
to the first step until it converges. Thus the
present scheme can be regarded as a Newton-
Raphson's method in which the drag is a non-
linear function of the bhody profile.

In the following chapter this scheme is
applied to two-dimensional Oseen flow.

2. BASIC EQUATIONS AND RECIPROCITY THEOREM
2.1 Basic Equations

Let us consider a body contour C, the

external domain D, and the interior domain B as
shown in Fig.l. The uniform velocity U is
supposed to be in the positive x direction.
Let all stresses in the fluid be normalized by
the fluid density p , then the basic 2-d Oseen
equations can be written in terms of the per-
turbation velocityies u and v, and the pressure
P»

Uo = -p + vvzu
X X (1)
Uv = -p + yviv
X ¥
and
u +v =0. (2)
X y

The adjoint equation which corresponds to the
reverese flow can also be expressed in the
following form by replacing U to -U.
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The boundary conditions are:
u=-U, v=20, u = u, v¥ = 0 on C. (5)

The stress components X and Y per unit length
on arbitrary plane in D are defined as

‘X -p+Zyu , {(u +v ) x

] X Yy x n (6)

Y U u +v ), =pt2vv y

¥y x y n

where x, and ¥y, represent directional cosines

of the normal n of the plane. On C, eq.(6) can

be transformed into the following form by using

the boundary condition (5}, the continuity (2),
and the vorticity r (= V- uy).

X==px = yg¥ » ¥ = ~py + ux 7
n n n n

The tangential and normal components of the
stress Ts and Tn on C become the form,

Ts = Xx +Yy = v£, Tn = Xx +Yy = -p. (8)
s 's n n

Similar expressions also hold for the reverse
flow quantity.

The relationship between the pressure and
the vorticity on the contour C can be derived
from equation (1) and the boundary conditions
as follows.

pn = _\’CS’ Ps = \’;“ - Lxq (9)
The last term should disappear if we take
Navier-Stokes equation instead of Oseen's one,
so that the pressure and the vorticity are con-
Jugate each other on C in real fluid.

Other flow properties in Oseen flow are
well known through many text books, and are not
stated here.




2.2 Reciprocity Theorem

Let us take two arbitrary velocity fields
{u,v) and (u',v"') in the domain D and introduce
the following double integral E.

E{u,viu',v')= yJf Z(UKU; +Vyv; )
+ {u +v J{u' +v' ) dxdy (10}
Yy x y X

The integral E would be related to the dissi~
pation energy in the fluid if the two fields
should coincide. It is obvious that recipro-
city between the two fields holds in the expre-
ssion E.

E(u,viu',v') = E(u',v';u,v) (11)
If we assume (u,v) satisfies eq.(l) and (u',v")
coincides with {(u*,v*), i.e., the reverse Oseen
flow in eq.(3), we can substitute these equa-
tions into eq.(10) and perform partial integra-
tion, by utilizing eq.(6). Then we can obtain
a line integral form.

S (u*X+v*Y)ds = J(ux*+vi*)ds
C C

~USf (uu*+vv* yds (12)
c
If we apply the boundary condition (5), the
last term vanishes and we obtain the form,
U fX ds = -U fx*ds (13)
C C

which means that the drags in the positive flow
and in the reverse flow are the same, and that
1t is independent of the body shape.

2.3 Velocity Field

In eq.(12), the reverse flow velocities u*

and v can be replaced to the Oseen kernel
functions 1like Ui(P,Q), Vi(P,Q), where the
point P(x,y) lies on the boundary C and the

singularity lies
domain D.

at the point Q{x',y') in the
Thus we have

u(Q)=-I(X(P)U1(P,Q)+Y(P)V1(P.Q)
C
—u(P)Xl(P,Q)-V(P)Yl(P,Q)

—(u(P)Ul(P,Q)+V(P)V1(P,Q))x }ds(P),

b (14)
5 uxz sz (uU2+vV2)xn)ds.
In eq.(l4), the contour of the line integration
has been extended to include a small circle
around the singularity point Q, and the stress
singularities Xi and Yi correspond to those of
velocities Ui and Vi satisfying eq.(6). All of
the singularities are listed in APPENDIX.

If the point Q lies inside of C, a similar
expression to eq.(l4) holds and then bringing
the point Q to the external region D the left-
hand side of the expression will be zero, which
can be added to the original eq.(l4). Then the
result will be the following form in which the
boundary condition is also taken into account.

V(Q)“-I(KU2+YV
C

236

It

u(Q) ?g(XUl(P.Q)+YV1(P,Q))ds(P)

(15)

v(Q) —I(XUZ(P,Q)+YV2(P,Q))ds(P)
C
Equation (15) holds in the entire domain D+D,
and means that the flow is at rest in the int-
ernal region. This is the fundamental expre-
ssion for 2-d. Oseen flow with the stresses on
the gurface as unknown variables.

If the point Q lies on C, we have a set of
integral equations for solving the stresses
X(P) and Y(P) on C.

J X(P)U (P,Q)+Y(P)V (P,Q) ds(P). = 1
c 1 1 (16)
s X(P)UZ(P.Q)+Y(P)V2(P,Q) ds(P) = 0

C

Eq.(16) can be solved by any numerical scheme,
Then we can determine the flow quantities, the
velocities by eq.(15), and the vorticity and
the pressure by the following equations.

t(Q) = -é(le(P,Q)+Y22(P.Q))dS(P) (17)
p{Q) = -é(XPl(P.Q)+YP2(PaQ))dS(P) (18)
It should be noted here that in eqs.(1l5) ta

(18) the pressure constant pg remains undeter-
mined, which can be fixed by prescribing the
pressure inside of C to be zero, for instance.

From the procedure mentioned above, we can
evaluate all the flow quantities once the body
profile is prescribed. This is the first step
of the present inverse analysis.

3. BODY DEFORMATION AND DRAG MINIMIZATION
3.1 Drag Variation Due to Body Deformation

Let us assume that the body profile is
deformed by an amount of 6n in the normal dire-
ction to the contour C as shown in Fig. 2. The
new domain is denoted as D', and corresponding-
ly the velocities become u' and v', which can
be analytically continued to the original cont-
our C if the deformation is very small. We can
define velocity variations gu and §v on C and
approximate them to the first order as 1in the
following form.

D' = AD + D

Fig.2 Body deformation



su = u'{on C)-ufon C}= -u {en C)én
=y 6n, on C n
n (13}
v = «v §n = ~Lx &n
n n
Similar expression also holds Tor the reverse
flow velocities u* and v*.

The drag R can be defined by using the
reciprocity integral (10) as the following
form.

UR = UfXds = -E (u,v;u*,v*)

C D
-U S f(u*u +v*v )dxdy (20)
D X X
The drag R' 4in the new domain D' can also be

defined by putting the prime ' to all the quan-

tities in eq.(20). Thus the deviation of the
drag 8R due to dn can be defined as
SR =R'~-R (21)

and utilizing the definition
obtain the following form.

of R and R we

BéR = I + I (22}
1 2
* %
I =E SViU GV
1 D(U H )
+Uff (uw*u +vv ydxdy (23)
D X X
I =E {u,viu*,vFI-E (u',v';u*",v*")
2 D D
U u®u "ev® e Tog®u vty Ydxdy (24)
D x X b 4 b 4
The first integral (23) represents the effect

of deviation of the domain, whereas the second
integral (24) corresponds to the effect of the
velocity change due to the body deformation.
After reduction and linearization of the
above equations we can first obtain the form,
I = f{ugg” + U%u )én ds (25)
1 C X
in which the vorticity definition and the cont-
inuity equation on € are used for the deriva-

tion. And for the second integral we can make
partial integration of eq.(24) and obtain
I, - é(u*’X'+v*‘Y'-u*X—v*Y) ds
- é(su*x+av*Y+u*ax+v*5Y) ds. (26)
For the deviations of the stresses X and Y in

eq.(26), we can use the following equation as a
variation of eq.(12)}.

é(u*ﬁx+v*5Y)ds = é(sux*+6vY*)ds
—Ué(u*6u+v*6v)x ds (27)

n
Substituting eq.(27) into eq.{(26),

eq.{19) we finally obtain the
second integral.

and using
form for the

I, = —é(Zu;;* - UZux)an ds (28)

The expression for the drag variation gR is
consequently derived in the following form,
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U SR = -é(vcc*- 202u )én ds
X

where the first term in the righthand side
corresponds to the same expression in Stokes
flow {Besshe and Himeno, 10), and the last term

to an inertia effect. Similar equation can be
obtained for the drag variation 6&R* in the
reverse flow,
* 2*
U 6R = +f{vgz™ 2U0% )én ds (30}
I X
and from eq.(13)
*

SR + 6R = 0. (31)
Combining these three equations we finally
obtain the following form.

flt ,;* Jx y dn ds = 0 (32)

C nn

USR = -S(vgg* + Uz(c+;*)x ¥y J6én ds (33)
C nn

3.2 Drag Minimization

An optimum profile in the present problenm
should have minimum drag, so that the variation
of the drag should be zero.

USR = -é(vcc* - 2U2ux)6n ds = 0 (34)
As the least requirement for the restriction
condition, we assume here the area A of the

body profile to be specified as a constant,
which means that the variation 8A becomes zero.

8A = fén ds = 0 (35)
[
Therefore from eqs.(34) and (35) we obtain
vee® - 20% = const. = C (36)
or, x
veg* + (cet*)x y = ¢ (37)
nn 0

It is noted that as the viscosity increases
only the first term remains, which corresponds
to the case in Stokes flow. In the high Rey-
nolds number range, however, eq.(36) becomes
ux = const. on C (38)
which will lead to meaningless solution because
of the boundary condition, i.e., 1lead to a
numerical divergence in the solution procedure,
The edge angle of the optimum body can
also be analyzed in the same manner as in
Stokes flow, and the requirement condition at
the edge 1s found to be a finite value for the
vorticity which results that the half edge
angle is proved to be 51.3 degree, same to
Stokes flow, though the proof is omitted here.

3.3 Iterative Solution Procedure

Since eq.(36) or (37) is nonlinear for the
unknown vorticities, we cannot solve the equa-
tion system directly. An iterative scheme is
required to cbtain the optimum profile. Let us
take a deviation of eq.(37), then we obtain the




form,

Sp(vg®+x y % (ugx v )

nn nn
=¢ -r*-E®*)xy , oncC (39)

4] nn
where the variations of the vorticity 6% and 6;*
are related to the variations of the stress
using eq.{17).

8z = jg(éle(P,Q)+5YZZ(P,Q))ds, on C (40)

Similar relation holds for the reverse flow.
We can also take the variation of eq.(15) for
the velocity, and substitute it into eq.(19)}.

du = -—£(6KU +$YV )ds = ¢y §n
1 1 n (41)
dv = —f(6XU YV )ds = - Lx fn
C 2 2 n

Therefore, once we obtained the flow quantities
on & prescibed initial body profile, we can
obtain the variations of the stresses 6X and
§Y, the linearized optimum body deformation n,
and the unknown constant € , by solving eq.(35)
and eqs.(39) to (41) at the same time. We
would also have to combine the similar expre-
ssiong for the reverse flow if the body shape
should be asymmetric., All the equations are in
integral form so that they can be converted
into a set of simultaneous equations., And the
kernel functions are almost the same to those
in solving the flow quantities.

After the deformation vector is obtained
on the body contour, we can deform the profile
and obain a new shape as the next step. This
procedure should be iterated until it converges
within a prescribed error allowance.

In case that the body profile is symmetric
about the origin, a great deal of the reduction
of the number of the unknowns can be made. We
thus have

L(x,¥)= - L{-x,¥), ¥ (x,¥)= - £¥(=x,y)

5H(K.y)= 5“(-X,Y) (42)
and eq.{32) is satisfied automatically. So the
unknowns are distributed only in the upper

gquadrants of € and it is not necessary to cal-
culate the reverse flow quantity.

3.4 Multi-Restriction Condition

It is not difficult to introduce other

type of restriction condition. The length of
the body can be specified in the following
form.

sn(y=0) = 0 (43)

The beam can also be specified as
én{x=0} = 0 (44)

in case of symmetric body.

Any other condition like the above can be
added to the original equations for determining
the deformation vector, although eq.(37) should
be changed to include additional terms in order
to compansate the increased number of equation.
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Thus we may assume

VELFH (LM x y = €+ ¢ xZ+ C x4, (45)
n'n 1 2

v
Considering eq.(34), the additional terms in

eq.(45) correspond to the conditions for speci-
fying higher order moments of the profile such
as the following forms, in the after body.

! x2gn ds = 0, éxﬂan ds = 0 ,,,. (46)
We thus have additional unknown coefficients
for the additional restriction conditions.
4. NUMERICAL PROCEDURE
4.1 Panel Method

For the first step of the inverse analysis

in the 2-d. Oseen flow, only right-left and
fore-aft symmetric body profile is treated
here. The contour € in the upper plane is

divided into N segments (N 1is about 30}, on
which the variables are assumed to be constant.
When the area is to be specified, the value is
taken to be the same to that of a circle of
unit radius, i.e., mw. For solving eq.(16) to
determine the flow field, the number of the
unknowns 1is 2N for the stresses X and Y in the
upper plane. And for determining the deforma-
tion wvector, 2N unknowns for 6X and 8Y in the
upper plane, N/2 for &n in the first quadrant,
and a few unknowns for the additional condi-
tions are needed. All the integral equations
are transformed into simultaneous linear equ-
ations and are solved by Gauss—-Jordan method
with double precision digit.

The 1initial profile for the iteration is
prescribed as an ellipse with an appropriate
beam-length ratio. The number of the itera-
tion is from 5 to 20 according to the initial
shape and to the error allowance for conver-
gence, which is about 0.003 for max. of §n.

4.2 Singularity Treatment

As will be shown 4in APPENDIX, all the
Oseen kernels like Ui, Vi, 2i, Pi includes the
modified Bessel functions of the zeroth and
first orders, Kg(kr) and ¥ (kr), where k=1/2v,
and r denotes the distance batwsen the points P

and Q. For small kr we have
Kﬂ(kr) = ~log(kr) + 0(1) (47)
Kl(kr) = 1/{kr) + 0(kr). (48)

These singularities can be treated only in
self-induced segment (P=Q), in which the singu-
lar part is analytially integrated and the rest
is treated by Gaussian numerical integrationm.

For high Reynolds number, an asymptotic
expansion for the Bessel functions can be wuti-
lized for larger value of kr.

Kg(ke) = K (kr) = ( 7/2ke)l/ Zexp(-kr) (49)

8ingular behavior like step function appears in



the wake region of a segment, which can be
treated separately both for the upper and lower
parts in the wake. This effect becomes severe
when the segment lies parallel to x-axis and kr
becomes large.

5. CALCULATION RESULTS AND DISCUSSIONS
5.1 Flow Around Elliptic Cylinder

Before proceeding to optimum profiles, it
is useful to calculate the Oseen flow around
elliptic cylinders in order to understand the
flow property and to confirm numerical accur-
acy.

Fig.3 shows the Reynolds number effect on
the pressure and vorticity distributions om the
circular cylinder. As Reynolds number increa-
ses the stagnation pressure and the vorticity
peak decreases and approaches to Filon's limit-
ing flow. This situation alsc holds for an
elliptic cylinder of beam-lemgth ratie B/L=0.3
as shown in Fig.4. The drag coefficient for
elliptic cylinders of wvarious B/L ratio is
calculated and shown in Fig.5. When the length
L is specified there is no optimum B/L ratio
with minimum drag so that flat plate has small-
est drag for any Reynolds number. However when
the area is specified there is an optimum B/L
ratio in very small Reynolds number range,
though the figure is not shown here. For mode-
rate Reynolds number, therefore, the flat plate
has smallest drag among the elliptic cylinders
of same length or same area in Oseen flow.

—— ¢ pressure
=== @ vorticity
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Fig.3 Pressute and vorticity distribution
on circular eylinder

-——— : pressure
——— 1 vorticity

RUES

=1 1
Rn = UL/y = |
10
100

-
e
o -
N

L~ 1000
-] -

Ve 100

10_ e
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Fig.5 Drag coefficient of elliptie cylinders
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Optimum B/L points for the optimum profile
which will be stated later, are also plotted in
Fig.5. Optimum profiles have a little smaller
drag than the elliptic cylinder of same B/L
ratio and also approach to flat plate as Rey-
nolds number increases.

Figs. 5 and 6 illustrate the friction and
pressure drag coefficients of the elliptic eyl-
inders. The friction drag does not show rapid
change against B/L and at high Reynolds number
it seems to be proportional to B/L. The press-
ure drag, on the contrary, seems roughly pro-
portional to the beam at moderate Reynolds
aumber. For the relationship between the fric-
tlen and pressure drags, the following formula

DP = (B/L) DF {50)

is numerically confirmed for elliptic cylinder
at arbitrary Reynolds number in 2-d. Oseen
flow, although the proof has not been done
here.

The location of the separation point on
the elliptic cylinders are shown in Fig.8. As
Reynolds number increases the separation point
moves upstream and approaches to maximum beam
position, i.e., to the limiting flow pattern.

5.2 Optimum Profiles

The calculation is made here only for the
symmetric profiles about origin, for simplicity
and for the first step of the present problem.

Fig.9 shows the calculated results of ele—
mentary optimum preofiles which have one ristri-
ction condition, for instance, the ares being
specified to be y, same to that of the cireular
cylinder of unit radius. Only the first quad-
rant is shown in the figure. All the profiles
have sharp edge at both ends where the half
edge angle should be 51.3 degree according to
the theoretical analysis. As Reynolds number
increases the shape becomes elongated and app-
roaches to flat plate.

The case when the length is specified to
be 2 1is shown in Fig.l0. The Reynolds number
dependency is similar to the former case of
area specified. The profile should also be
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Fig.9 Optimum shape in 2-d. Oseen flow ( Area = 7 )

similar to the former case when the correspond-
ing Reynolds number is the same, since the same
equation (37) is adopted for thr requirement of
the vorticity. The drag has already been shown
in Fig.5, where the drag reduction 1is quite
small compared to that of elliptiec cylinder of
same B/L ratioc.

Fig.ll shows the pressure and vorticity
distribution on the profile, which has similar
tendency to that of elliptic cylinder in Fig.4,
although the vorticity has finite value at both
ends of the profile. Fig.12 shows the half
beam wvalue which tends to that of Stokes flow
{abt 0.4) for small Renolds number and appro-
aches to zero, i.e., flat plate. The profile

curve is normalized by the half beam and by the

half length as shown in Fig.13. The normalized
profiles in Qseen flow 1{s somewhat elongated
probably by the influence of the inertia term,
compared to that in Stoke flow.

5.3 Optimum Profiles with Multi-Restriction

When the number of the ristriction cendi-
tion is increased the freedom of deformability
decreases as experienced in the Stokes flow
problem. Here only the results with the length
and the beam specified are showm as examples of
the multi-restriction case. The length 1is
fixed to be 2 in all cases and the beam is spe-
cified to be the value of the elementary opti-
mum profile for a prescribed Reynolds number.
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Fig.10 Optimum shape in 2-d. Oseen flow
( fore-aft symmetric and length-specified )
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on optimum profiles
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Fig.12 Half beam of optimum shape { L = 2.0 )
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Fig.!3 Normalized optimum shape

Figs.l4 and 15 show the cases when the
half beams are fixed to be 0.343 and 0,287
which correspond to the optimum values for the
elementary optimum shape at Reynolds numbers 1
and 2 respectively. Wher Reynolds number
increases with length and beam fixed, profiles
with blunt nose are obtained and at higher Rey-
nolds number the iteration does not converge.
It can be considered that the blunt nose is a
numerical solution with a cirtain accuracy and
it may not be an exact solution, since the half
nose angle must be 51.3 degree if the vorticity
remains finite there. Therefore the appearance
of the blunt nose seems to be due to the non-
uniqueness of the solution at high Reynolds
number. In any case, the increase of drag near
the separated end for the blunt-nose profile
seems to compensate with the drag decrease in
the smoothened side area. A similar situation
was also experienced in Bessho and Kyozuka's
analysis on the optimum profiles based on the
boundary layer comncept {8).

0

Fig.14 Optimum profiles ( 1l=], b=0.343 )
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The cases when narrower beams are speci-
fied are shown in Figs.l6 to 18. The beams
correspond to the elementary solutions at
higher Reynolds number, When the beam becomes
smaller, the blunt nose no longer appears and
convergence is not achieved at high Reynolds
number. Instead, round curves appear in the
side region at lower Reynolds number. This 1is
a quite similar result to that of Stokes flow
(10) with multi-restriction.

0 0.5

Fig.15 Optimum profiles { 1=1, b=0.287 )
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Fig.16 Optimum profiles ( 1=1, b=0.176 )
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Fig.17 Optimum profiles ( 1=1, b=0.110 )
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Fig.18 Optimum profiles ( 1lal, b=0.067 )

6. CONCLUSIONS

Bessho's inverse scheme for obtaining opt-
imum boundary shape by boundary element method
is applied to two-dimensional Oseen flow. The
optimum profiles with minimum drag are obtained
in case of symmetric body. The following con-
clusions can be made.

1) In case when the area is specified the
optimum profile becomes rather elongated than
that in Stokes flow, and approaches to flat
plate at high Reynolds number.

i1i) The optimum profile has sharp edge
both ends where the half angle is 51.3 deg.

111} For the case of the length specified
similar results are obtained.

iv) When multi-restriction is specified,
blunt-nose shapes are numerically obtained for
the case of relatively large beam specified.
For smaller beams, on the contrary, round shape
in the side region appears which are similar to
that in Stokes Flow.

v) All the diterative calculation do not
converge at High Reynold number.

Further studies should be necessary on the
asymmetric optimum profiles, axisymmetric case,
application of the present scheme to Navier-
Stokes flow, and so on.

at
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APPENDIX: OSEEN'S KERNEL FUNCTIONS

The kernel functions 1n the 2-d. Oseen
flow is well known and the follewing expres—
sions are adopted here, in which the coeffi-

clents are determined so as to make the
integral of the stress kernel X  around the
point Q be unity. 1
ZHUL(P;Q) ={lnr + F)x + 2kF (51)
270 =29V = (ln r + F) (52}
2 1 y
21V = =(In ¢ + F) (53)
2 X
In the above,
r? = (xx")? + (y~y")? (54)



F(P,Q)= K,y(kr)exp(k(x'-x)) (55)

k = 1/(2v) (56}

where Kp is modified Bessel function of zéroth
order. The kernel functions for pressure can
be derived by taking harmonic part of the velo-
city kernel.

Z"PL(P.Q) = =(In r)x (57)

2rP,(P,Q) = ~(In r)y (58)
And the vorticity kernel is defined as

Zi(P!Q) = vi(P’Q)x' - Ui(P’Q)y' (59)
so that we obtain

Zvnzl(P,Q) = Fy (60)

ZanZ(P,Q) = -F,. {61)

The kernels for the stresses can be derived
from eq.(6) in the preceeing chapter.



DISCUSSION

William B. Morgan,
David W.Taylor Naval Ship R&D Center

From your work on optimum body profiles, can you
Elve any guidance into the optimization of bedy profiles
in turbulent flows? And, do you see any possibility of
extension of your techniques to these flows?

Reply -

Thank you for the discussion. The key point of the
present method i1s whether variational expressions
both for the flow and the drag are possible or not.
Therefore a direct extension of the present method to
the real turbulent flows seems to be difficult. As cited In
the references in the paper, however, an extension is
possible if we use an approximate formula from turbu-
lent boundary layer theory to obtain the drag, like
Squire and Young's formula. Another possibility of
this methed is an extenston to Navier-Stokes flow, on
which Bessho has recently made some progress. The
result would appear in the near future,

Rr. Jacek S. Pawlowsk,
Institute for Marine Dynamics, NRCC,

I share the authors’ Interest in inverse hydrody-
namic problems and therefore I have found their paper
most Interesting. I would like to point out that the
inverse problems can be understood in a broader sense
as problems of optimum form description rather than
finding the optimum geometrieal form for a particular
regime of motions [a]. in practice the form of a body can
rarely be optimized with respect to one hydrodynamic
force, besides it seems that the optimum form descrip-
ton approach leads to a richer mathematical structure.

lal] Jacek S. Pawlowski, Form Parameters for Ship
Design, Based upon Hydrodynamic Theory, Interna-
tional Symposium on Ship Hydrodynamics and Energy
Saving, El Pardo, September 6-9, 1983,

Reply -

As you pointed out, it would be important to take
many paramneters into account for the purpose of find-
Ing optimum ship form tn actual ship design. However,
the aim of the present work {s not such a practical
application but is to offer a basic feature of the problem
of finding the body form of minimized drag in viscous
fluld flow. We believe that this kind of basic study
would provide a physical base of understanding real
flow to ship-form designers.




