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M. Bessho, H. Kawabe, Y. Iwasaki

Department of Mechanical Engineering, The National Defence Academy,
Hashirimizu, Yokosuka 239, Japan

1 INTRODUCTICN

A method of numerical analysis for the sound radiation problem are
dealt with in the present report in which the vibration of main or
auxiliary engines is transmitted to the ship hull and then its
hull vibration radiates sound into the water, so that it may be
treated as the mutual coupled vibration between the ship hull and
the surrpunding exterior fluid.

Junger' solved at first numerically for the mutual coupled
vibration of fluid-structure interaction on infinite circular
cylindrical shells and spherical shells in a fluid. And then, he
calculated finite eircular cylindrical shells and the reinforced
cages. His method of approach was snalytical and this is appro-
priate to understand the basic property of this problem, but
the shapes that can be computed are limited to simpler ones such
as a circular cylinder or .sphere.

Then, Chen and Schneiker® showed a method of calculation for the
sound radiated from a vibrating arbitrary shaped body, but it
cannot be regarded as the exact solution of the mutual coupled vi-
bration of fluid-structure interaction, because the vibration of
the structure are given without taking account of sound radiation.

On the contrary, Craggs3, Swith et al.™, Wilton- showed the exact
numerical analysis of the mutval coupled vibration of fluid-
structure interaction, in which the vibrations of structure are
solved by F.E.M. and the sound intoc fluid by B.,E.M. , fitting the
condition of the boundary. This method was applied to the interior
noise problem like an automobile or the exterior noise problem
like Sonar systems.

In this paper, we discuss the problem of ships by the last
sethod. In general, a ship is floating on the free surface, #so
that we have to consider how the underwater sound due to a ship
hull vibration is influenced by the water surface.

Hence, we show the method of numerical analysis for the charac-
teristics of the sound which is radiated into the water from the
ship hull floating on the free surface. Namely, we analyze the two
dimensional steady forced vibration problem of an infinitely long
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cylindrical structure floating on the free surfacs.

Especially, we discuss the property of the sigularity on the nu-
merical integration of the kernel function appearing in the sound
radiation, and show an accurate method of numerical integration.

As a numerical example, we calculate the vibratiog problem of the
free surface, compare with another exact solutions®, and satisfy a
good agreement between results by the present method and exact
solutiona.

2 GENERAL FORMULATION OF THE COUPLED FLUID-STRUCTURE VIBRATION
PROBLEM

Let us consider the two dimensional time harmonie vibrating prob-
lem when the external forece acts on a ship hull floating on a free
water surface, Figure 1.

As the velocity potential field ¢ and the displacement field are
the time harmonics with circular frequency w , we ususlly use
abbreviation such as

®(x,y;t) = Reld({x,yle I {1)

where ¢ (x,y) is complex variable which is independent of time,
Re[ ] means the real part to be taken, and i=.=1 .

In the following, we use the function ¢ expressed by the location
{x,y) and abbreviate elW

iwt

X

Figure 1. Coordinate system

2.1 Fundamental equation of fluid field
Assume the homogeneous fluid of density p and the fluid motion
is nonviscous and irrotational, .

Let D, be a domain of fluid, C, be a interface boundary between a
ship hull and fluid, and C¢ be a free water surface. For a time
harmonic vibration, the equation of motion of a fluid becomes the
Helmholtz equation,

V3¢ + k¥ = 0 in D, (2)
where k=w /¢ , wave number, ¢ is the velocity of the sound in

a fluid.
On a free water surface, the pressure is zero,that is,
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o =0 on Cf. (3)

On the interface boundary, the normal surface veloclity of the
ships hull is equal to the fluid velocity,

'g_:-’;' = iww on C_ (4)
where w denotes the displacement in the normal direction of the
ships hull.

When the motion is the time harmonics, the radiation condition
that the cut-going wave still remains at infinity boundary have to
be considered. On the fictitious boundary C, which is the circle

with infinitely large radius r, the radiation condition is as
follows,

%}:% = -ik¢ on Cr- (5)

Reciprocal theorem and boundary integral equation Let us congider
two regular potentials ¢V and ¢7. They vary sinusoidally in time
with the same frequency. Then let us introducs the following
functional, :

L* (¢, ¢'%) = __DT JJ[V¢I1}V¢Q: - k2¢M%?1aq .

(6)

. D
If ¢ is equal to ¢? , the functionalL* stands for the modified
Lagrangesan.

It is clear that thers exists the reciprocal relation in equation
(6). If the sequence of the states of potential ¢ and ¢Pare
changed, the value of the functional L* does not change. That is,

L* (67, ¢%) = Lr(42,¢7) . o
As ¢"and ¢'?are regular and satisfies the fundamental equation
(2) in the fluid domain D,, we can integrate the equation (6) by
parts. We have

__P 3D
L* (¢, ¢'%) —Tl ¢ 5 ds . (8)

and the equation (7) can be written in the following form as the
reciprocity.

2 ¢ ay 3¢

I"?n_ds“h’ Sn9s (9)
C

where C=C +Cf+cr'

This formufa can be called the reciprocal thecrem.

Let us introduce the fundamental selution 5(P,Q) as the state &2

which satisfies the free water boundary condition (3) and the

radiastion condition (5),

¢ = $(P,Q) = FUHA(KR) - HI(KR)], (10)
where
P = (XPJYP) en C,

Q = (foYQ) in DW r
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rd

R =T = [(xg-%,)% + (yg-yp)?1¥,
R’ = PQ

Q = [(xQ—xP)’ + (yQ+yP)’l& '

}ﬁ?( } : the zero-th order Hankel function of the second
kind.

Substituting the equation (10) into (%), then we obtain the fol-
lowing representation

0(0) = [ro(r) 2B IUP) 5(p )05, (11)
‘ r
P P
o
W
where ¢V = ¢
This equation permits us to solve the boundary valus problem in
the fluid by the integral equation.

Discretization Numerical procedure to solve the boundary value
problem by making use of the equation (11} is as follows. At
first, the boundary. C, may be divided into elements. Assuming that
the unknown values ¢ and 3¢/3n are constant for each element and
giving boundary condition at the middle point of each element, we
can write the equation (11) as following simultaneous equations,

2%
3n ‘
- (12)
[ H, , B, ] = {0},
b
where
H.] 19 = J S{Pj'Qi)dSP 3
Cw 3
95(Py,0;)
Hz ij = 513 - J"—"—Er'—dsp [
. cwj

§., ueans Kronecker's delta.
1]

Radiated under water sound power Radiated under water sound power
P from vibrating hull is the time averaged value of the product of
the real part of the surface pressure and the velocity.

T
P =1J [iT-I Re(p}-Re{iww]dt ]ds

Cw 0

- _iow ad = 8¢ (13)
= —3—--I [ b=~ ¢ T 1ds,
C
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where "—" denotes the complex conjugate value to be taken.

All energy of the radiated underwater sound is spread without
decreasing because the viscosity of a fluid is neglected.
Therefore, the power can be calculated from the integration over
the circle located at sufficient large distance from the ship.
From the property of the kernel function, the velocity potential
at the point Q(rq,BQ) on the boundary C, behaves like as follows

L
. -ikr_ +—i
0(Q) sgpb—e T T rik,8) onc., (14
where @
a n
= _e__ 3e(P) ikw ikw*
F(kreg J[ $(P) Bnp_'ﬁﬁ___][e - e ]dsp’ (15)
C
e
mf}= xPCOSGQ t yPSLnOQ

Applying this property of the far field potential, the power is
calculated by the following equation.

pw cF{k. B 1
P = 16“_[ F(k,BQ) F(k,BQ) dGQ . (16)
cw

From this equation, we can understand the physical meaning of the
function F(k,0.) that the square of the function is the intensity
of the power in™the directionBQ on the boundary C, with the
radius Iy . Therefore the ratio of all over power to the
- intensity of the power which is radiated in the direction 0 is
given as following equation.

. |Ftk,0)}?
D(8) = = |

—1‘,—[ |F(k,8) |2 4o (17)
0 .

2.2 Ship structural equation
The discretization method of the ship hull structure is expressed
by the finite element method (with straight beam element). The

finite element equations for the structure with time harmonic vi-
bration are then of the form

2
[ -w?M + K ]ﬁ s} = { fp Yo+ { fq b, (18)
where M and K are mass and stiffness matrix respectively, & is
displacement vector, f, is a load vector derived from known
applied forces, and £  is a load vector representing the fluid
pressure acting on thg fluid-structure interface boundary.,
On the interface boundary, the fluid pressure is expressed by the
velocity potential as following equaticn.

p = - ipwd on C" - (19)
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Explicitly, the vector fp can be associated with velocity
potential

{ £ b =P I ¢}
Then the equation (18) becomes as follows.

[-—sz+K][6}—[P]{¢}=[fq}.

(20)

2.3 Coupled fluid-structure equatlons

The complete solution of the fluid-structure interaction problem
may now be described by combining the fluid equation (12} with
structure equation (20}, On the interface boundary between fluid
and structure, the continuity of surface normal velocity between
them must be designated.

The continuity of normal surface velocity is achieved by matching
st surface middle point of structural element.

-iwl B )M &}, {21)

where wpiq ¢ surface normal displacement of the middle point of
structural element.

Substituting equation (21) into equation (12}, we obtain the fol-

lowing coupled fluid-structure equation.

~wiM + K i -P 6 £ ,
................. R [ SR P . (22}
H1 ; H2 [} 4]
where ,
Hy = - dwl H J[ B ),

3 NUMERICAL PROCEDURE OF INTEGRATION OF KERNEL FUNCTION OF
BOUNDARY ELEMENT

The kernel function S{P,Q) and its derivative in the boundary
element equation (11) are very complex and the integration must be
done by the numerical integration. Generally speaking, the.
accuracy of the boundary element analysis depends on the accuracy
of numerical integration especially, of singular kernel. Then the
integration must be done carefully.

Therefore, let us study the numerical property of kernel function
and improve the accuracy of its integration.

3.1 Property of the sinpularity of the kernel function

The kernel function S(P,Q) is the sum of Bessel function and
Neumann function. Integrating these functions on each element, the
most serious problem is.that Neumann function becomes infinite
when the control point Q is near to the element. Taking this into
consideration, in the vicinity of the origin, Neumann function
behaves like as follows, ’

YolkR) —emr—> = (log(kR/2)+y) =2 log R ,  (23)
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Therefore, the dominant term of the singularity of Neumann
function is the logarithmic term log R . Applying this property to
the integral of Neumann function, we propese the accurate in-
tegration methed as follows. Namely, let us separate the
singularity term from Neumann function as follows.

¥0(kR) = [ YO(kR) —-%-log R 1} +-%-log R , (24)

Then the integration of the first term of the right hand side of
equation (24} can be done easily by the simple numerical
integration such Gaussian quadrature or the trapezoidal rule,
because the singularity is eliminated,
The integration of the last term of
the right hand side of equation (24)
can be done analytically by the fol-
lowing method. By this method, we
can evaluate the singularity of
Neumann function accurately.

3.2 Integration of the logarithmic
singularit _

Let us study the integration over

the arbitrary element P P 17 on

the boundary when the control point

Q is random location in the domain,

as shown in Figure 2. NHotations are

shown in the figure and positive

direction of angles are counter-

clockwise. By transforming the vari-

able suitably, the integration can :

be done analytically. The integration Figure 2. Local coordinate

of log R will be as follows gystenm
P 0
n+1 n+1
J log R ds_ = f logf —h } h das {25)
P ‘cos(B-a_ )’ cosi(0-a_) '
P 8 n n
n n
where = - -
h = -R cos{(#8 an)'
Sp= h tan(e-an)_
Therefore
Pn+1
-h en+1-an
log R dsp = h [ tan t {log(m)-'l} + £ 1
Py 8

= 'Rn+1 sin(9n+1-an}(log Rn -1)

+1

+Rn sin(ﬂn-an}(log Rn-1) +h(9n+1-6n).

(26)
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The integration of the differential valus
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of logarithmic singu-

larity can be easily done by the following relation
38
35;109 R = s, . (27)
Therefore
Pn+1 en+1 o
log R dsp = 28 4s_ - [ o) %!
BnP asP P 9
P 8 n
n n
= Oner ~ 8 . (28)

Taking the limit from the interior domain t

gration reaches as follows.
0 -0

o the boundary, inte-

n+1 n

Q on PnP

.

~
-

{29)

n+1

3.3 Numerical example of
integration
For an example, when the range
of the integration is taken be-
tween the point P (-a/2,0) and
the point P ,,(a/2,0) on the x-
axis (element length is a), we
consider the accuracy of the
numerical integration of
Neumann function.

At first, when the observation
point Q 1s in the middle point
of the element, the results of
the integration for various
non-dimensional wave number ak
are shown in Table 1. The val-
ues of integration are non-di-
mensionalized by the element
length a . When the wave num-
ber ak is smaller than 1.0
the computation error is less
than 4 T . Although the pres-
ent integration method is

]

20

gio,y)

P AT TN

«—— Present method
* Trapezoidal rule

ak =1.0

Exact 1123591

Figure 3. Integration of

Neumann function

Table 1. Accuracy of integration of Neumann function
ak exact’ present method error (%)
0.2 -2.174306 -2.170858 0.159
0.4 -1.728544 =1.717725 0.626
0.6 -1.464277 -1.443893 1.392
0.8 -1.273812 ~1.242644 2,447
1.0 -1.123591 -1.081138 3.778
2.0 -0.637069 ~0.548363 13.924
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very simple, the accuracy is good enough. In the discretization of
the fluid model, if the element lengths ak are selected less
thaen 1.0 , there is no problem for the accuracy of the
integration of kernel function,

When the observation point Q moves from the origin to arbitrary
peint of y-axis, the integration of Neumann function is shown

in Figure 3 . In this example, the non-dimensional wave number ak
is 1.0 . In the figure, the dot mark means the result by the
trapezoidal rule. When the control point Q lies near the element,
value of yn/a is less than 1.0 » there ia a difference between
the present method and trapezoidal rule. Therefore, the accurate
satimation of the singularity of Neumann function can not be
done by simple numerical integration such as trapezoidal rule or
Gaussian quadrature. But, when ys/a is larger than 1.0 ,
namely, the distance from the observation point Q to the element

is larger than one element length, difference between them is
negligible.

4 EXAMPLES OF THE CALCULATION

In order to evaluate the pr%Priety of the present method, it is
compared with exact solutions® of sound problem for semi-submerged
¢ylindrical shells obtained by Junger's method.

The several conftants used in the numerical calculation are the

same as Junger's' as follows.

radius of ecylindrical shell a = 3.0 (m)
thickness of cylindrical shell t.= 0.06 {m)
Young's modulus E = 1.9 (Xg/md)
Poisson's ratio v = 0,27

specific gravity of water g = 1000 (RKg/m*)
specific gravity of shell material Pg= 7700 (Kg/m?)
velocity of sound in water e = 1460 {m/s)
exciting force q = 1000 ' (Kg/ms?)

The exciting force acts on the bottom perpendicular downward.

The numerical results of the vibration mode and underwater
radiation pattern for 1.0 Hz and 300.0 Hz are illustrated in
Figure 4,5 . In these figures, the present numerical results are
marked by circles and the exact solutions by the solid lines.

Figure 6 shows the relationship between the vibrating frequency
and the radiated sound power. It shows & good agreement over a

wide range of frequency, so that the present method may be useful
for a cylinder of an arbitrary shape.

5 CONCLUSIONS

We have studied the numerical analysis on the problem of under-
water radiated sound from a two dimensional circular cylindrical
shell floating on the free surface which vibrates periocdically.
This problem has been formulated generally as a coupled vibration
of fluid-structure interaction by using both boundary conditions,
making use of the F.E.M. for ship hull vibration and B.E.M. for
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sound -radiation. Especially the property of singularity of the

kernel function of sound radiation has been studied and an
accurate method of numerical integrations has been proposed.
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Figure 4. Radiation pattern and deflection mode (£=11.0 Hz)
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Figure 6. Total radiated sound power
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