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1 INTRODUCTICN

Sound radiation from vibrating structure causes 8 serious
problem in connection with noise rollution and confortableness
to ride in ships, aircrafts, and automobiles. As to this
Problem, there are many reports whiqP deals with coupled
structure-fluid or air vibration system 112, .
S5imilarly, sound scattering problenms by the structure app%;ing
an incident acoustic wave are studied by many researchers -4,
However, these sound radiation and scattering problems have
been independently treated ag different problems. Th%f%:is few
report which desceribes the relationship between them 279,

In this report, we study the reciprocity for the coupled
structure-fluid vibrating system. In the time harmonie
vibrating fluid domain, we introduce the reciprocal theorem
which have an analogy to the antenna theory in the electro-
magnetic wave for transmitting and receiving problem.
Subsequently, we expand the theorem into the reciprocity of the
coupled structure-fluid vibration system for the relationship
between sound radiation and scattering problem. By applying
the theorem, the property of the sound scattering problen by
the structure can be evaluated from the solution of radiation
problen.

The method of the calculation is that the finite element

analysis of the structure is matched at the structure-fluid

fluid domain.
To verify its usefulness and accuracy, some numerical examples
are shown for semi-submerged ¢ylindriecal shell. It is
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2 FUNDAMENTAL EQUATICONS

Let us consider the two dimensional time harmonie vibration
with circular frequency w and express all dynamical quantities
in the form

F(x,y;t) = Re [ f(x,y)eimt | (1)

with the sign Re and eimt usually omitted.
Assume the homogeneous fluid of density p and the fluid motion
is nonviscouse and irrotational.
Let Iw be a domain of fluid, Cw be a interface boundary between
a shell and fluid, Cf be a free water surface, and Cr be a
fietitious boundary on infinite large radius r from a shell, as
shown in Fig. 1. For & time harmonie vibration, the
fundamentsl differential equation in fluid domain becomes the
Helmholtz equation.

2 24 _ \

Vi + k%% = 0 in D, (2)
where k = w/e ; wave number, ¢ is the velocity of the sound in
a fluid.

On a free water surface, the pressure 1s zero, that is,

On the interface boundary, there should be the continuity of
normal surface velocity between shell and fluid

CL)

3n = lww on C_ {4)

where w denotes the displacement in the normal direction of the
shell.
Radiaticn condition is as following equation.

3 _
> = -iké ~onc, (5)
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J RECIPROCAL THEOREM

Fluid domain
%E—:;nl-u?ﬁ-t—lm—_wt' velocity potential 0, and 02 which

; ing differential equation (2), free water
R eyl :,‘::dﬁﬁ? (38), and radiation condition (5). The
:::r::o:;i% theorem in fluid domain is expresgsed ag following

equation '.
3 3¢,
2 = -—1t
I ¢ 3n ds = I ®2 3n ds (6)
c, Cy
By using the relationship between normal surface displacement w

and velocity potential on interface boundary Cu, equation (6)
becomes following equation.

I Py Wy ds = f Py Wy ds (7
Cw Cw
where P = -ipuwd } pressure on C, (8)

If we assume Py and Po to be the resultant pressure when the
displacement w, and g vibrates at a point 8¢ and s, as a
§ function on tLe shel%, the equation (7) becomes as follows,

I p,(s) 6(52) ds = Py {s,)
c
W
: (9}
I p,(s) 5(51) ds = p2(s1)
C
w

p}(sz) = p2(5.])

Let us consider the vibration of shell applying an ineidant
plane acoustic wave % in the direction g »  Let ¢. pe
the diffraction potential assuming the shell to be the rigid
body and ¢r be the radiation potential resulting the boundary
to deform itself by the displacement w. Totrl forced vibration
energy supplied by the incident wave is as following equation,

E = f {-(po+pd)} w ds
C 26
v ; 1 r
= I {lDw(¢0+¢d)} 'Ia-gﬁ- ds
c, N
= p [ (¢0+¢d)_3n£ ds (10)

Cu

r
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We can replace the diffraction potentisl d’d with the radiation
potential ¢r by using the reciprocal theorem.

2¢ 3¢
= - -a
E=p I (%g3n * 0, 3, ) ds
c (11}
W
The boundary condition of diffraction potential ®4 is ag

following equation.

3

Substituting the equation (12} inte (11), Therefore we have.

3¢, 3d,
2 =6 | (0gm- ¢, 52) as (13)
C
w

Incident acoustic plene wave ineluding free water surface
effect is expressed following equation.

0y = cE(elkZ _ gikz’,

_ (14}
where £ : amplitude of water particle of incident wave

z
zl} = X cosa * y sina (15)

Substituting equation (14) into (13). We can write the energy
as following equation,

3¢ .
r .
B = pok [ [5E- 6 0 otR7 L gik2’) o0 (g
Cu
Right hand side of the equation (16) equals to the Kotchin
funetion F(k, a ) which means the intensity of far field
radiated sound power from vibrating shell in the direction a .
Therefore we have

E = pcE Flk,a) (1

If the deflection w is an unit amplitude at point sy on the
shell, equation (17) can be written as following equation.

P(s‘l) = chF(k,ﬁ.) (18)
where P(s1) - po + Py
This meens thet the pressure at s applying an incident
acoustic wave iz proportional to the gotchin function when the

natnt 8. 4a Pavand b cctbea
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Part 2) Generalized reciprocal theorem

According to mechanical vibration systenm, Maxwell-Betti's
reciprocal theorem in elastodynamic problen constituted a
reﬁation between two different situation { 97, Wy} and | o)
W2 .

J 95 ¥ ds = f 9 Wy ds

Cw + Ca Cw + Ca

(19)

where q is a surface traction.

Surface pressure Py*Py aPPlying incident acoustic wave can be
considered to be the traction 9z and we can identify the
traction q4 with external force q acted at point s on Cype

From equation (19) end (10), we have,

E

I (_po *+ Py ) W, ds
(20)

c
=I 4 wzds = g wis)
c

Therefore, from equation (20) and (18), we can obtain the
following equation.

F(k,a) wis)
p = ot (21)‘

The intensity of sound power F(k,& ) radiated in the direction
acting the external force q at point s is proportional to the
deflection w(s) at point son C, applying incident acoustic wave
with direction a .

This is the general reciprocal theorem including coupled
structure-fluid vibration system,

For instance, if we measure a deflection amplitude w at each
point on shell surface applying incident acoustic wave in the
direction o, we can estimate the intensity of far field
radiation acoustic power in the direction & when the external
force acts at each points.

Especially, if there is a point whose deflection is equal to
I zero, the intensity of far field radiation power can not g0 out
in the direction & when the external force acts at the point.

it e - b A e e

4 FORMULATION

Fluid field

Let us introduce the fundamental solution 5(P,Q) &s the state
in equation (6) which satisfies the free water boundary
condition (3) and the radiation condition (5)
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8, = S(P,Q) = [ HJ(KR) - HI(KR’) )

P=(XP.YP). Q=(XQIYQ)

1
R = PQ = [(xQ-xP)2 + (yQ-yP)’]’ (22)
R’ = FQ = [(xQ—xP)2 + (yQ+yP)2]']‘F

Substituting equation (22) inte (6), then we obtain the
following equation.

®(Q) - bg(0) = | [ o(p)2E8LRLR) _ B8IB)g 0y g 4o

0 anp BnP P
Cu (23)
¢ =
¢0 + ¢r + ¢d

is a total acoustic potential.

- To solve the boundary value problem of the equation (23), we

divide the boundary Cw into element, Assuming the unknown

values ¢ and 39/9n are constant for each element. we can
obtain the following simultaneous equations.

where

a9
an
1,H2]¢=[¢0} (24)

c

Hy ,. =6, - j 3
213~ 743 -—-anpstPj.Qi) ds,
C
W,
]
Gij s+ Kronecker's delta.

Structural equation

The discretization method of the structure by the finite
element method is some with former report’'. The finite
equation for the structure with time harmoniec vibration are
then of the form

[-w3M+K]{6}={fp} : (25)
where M and K are mass and stiffness matrix respectively, § isa

a displacement vector and f_ is a load vector representing the
fluid pressure acting on a Q%ructure—fluid interface boundary.
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Coupled structure-fluid vibration system

On the interface boundary, the fluid pressure is expressed by
the velocity potential as following equation.

p = —ipw(l) on cw (26)

Then the equation {25) becomes as follows.

6
( -w?™M + K , -p ] = {0}

¢ (27)

where —
(e, =10P 100}

On the boundary Cw, the continuity of surface normal velocity
between fluid and structure must be designated. The condition
of continuity of the normal surface velocity is as following
equation.

3¢ . ;
Bn - "W YWaia = -iwl B ){ &} (28)
where w ., : surface normal displacement of the middle point
of the structure element.
Substituting the equation (28) into (24), we obtain the
following coupled structure-fluid equation.

~wM + K | -p || s 0
, yTT A G (29)
H.] | H2 ¢ ¢0
where ,
HY = -iw( Hy 1l B ]

Scattering sound power,scattering width

Seattering sound power from vibrating shell is the time
averaged value of the product of the real part of the surface
pressure and the velocity.

T
- 2 3%
P = l [ T l Re[ p ] Rel( T 1 dt ] ds (30)

w

From the property of the fundamental sclution at the sufficient
large distance from the shell, the power can be calculated by
the following equation '.

m
P = 1%n J |F(k,0)]2% a8 (31)
0
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As F(k,0) is the intensity of far field radiated sound power
in direction 8 , the directivity of the scattered sound power
is the ratio of the intensity of the powsr in the direction

to the all over power.

2
D(8) = T|rFu<,e}|

1 (32)

TJ IF(k,8)[? a6
0

The scattering width Q is the ratio of the scattering power p
to the incident sound power P, per unit width,

Q= P/P, (33)

where 1 '
Po = 7 pow?g?

5 EXAMPLE OF CALCULATION

In order to verify .the property of the present method,
computation results by this method will be compared with exact
solution for sepi-submerged eylindrical shells obtained by
Junger's method ~.

Several constants in the computation are assumed such as;

radius of cylindrical shell 8 =30 (m)
thickness of shell t =0,06 (m)
Young's modulus E = 1,9x 11 (kg/msz)
Poisson's ratio v o= 0,27

specific gravity of shell Pg = T700 (kg/m3)
specific gravity of fluid p = 1000 (kg/m3)
velocity of sound in fluid C = 1460 (m/s)

The direction of incident acoustic wave is e =1/4 .

The numerical result of the vibration mode and scattering sound
pattern for 387 Hz ( nondimensional wave number ka = 5.0 )
are illustrated in Fig. 2, The present numerical results are
marked by circles and the exact solutions by the solid line,
Fig, 3 and 4 shows the relation between the incident wave
frequency and the deflecton at bottom and the scattering width.
These results show a good agreement over a wide range of
frequency.

In order to confirm the reciprocal theorem (21) numerically, we
calculate the radiation problem and the scattering problem for
submerged rounded corner square shell as shown in Fig. 5
respectively and compare with each phenomenon. The direction
of incident acoustic wave is @ =0,m/4,m/2,3n/4, w , and
the shell deflection amplitude is measured at point A as shown
in the figure. In this case, the frequency of incident wave and

external force is ka = 0.10 . Results are shown in Table 1.
The 1eft oida amtec s ar o .- :
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amplitude at point A epplying the plane incident acoustic wave

in the direction o with amplitude & . The right side

ecolumn shows the intensity of far field radiated sound power in

*the direction a when the external force acts at point A with

seplitude q . Each values agrees precisely.

Applying the reciprocal theorem, we can eesily imagine to

control the sound radiation pattern. The procedure is that;

{1) To find the point whose deflection amplitude is zero or
pinimum when the incident wave in the direction applies at
shell as shown in Fig. 6.

(2) If the external force acts at the point, the radiation
sound does not go out in the direction as shown in Fig. 7.

6 CONCLUSION

¥We have studied the reciprocity of the coupled structure-fluid
time harmonic vibration system for the relationship between the
sound radiation and scattering problem.

¥e have introduced the relationship that the shell surface
deflection amplitude eapplying the incident plane acoustic wave
in the direction @ is proportional to the intensity of the
radiated sound power in the direction a when the external
force acts at the point. In order to confirm the reciprocity
numerically, we have formulated the sound scattering problem as
a coupled structure-fluid interaction system by using F.E.M.
for the elastic shell and B.E.M. for fluid domain.
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Fig. 2 Vibration mode and scattering sound pattern for ka = 5.0.
Circle shows the present methed and the solid line by the
exsct solution.
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Fig. 6 Solution of sound scattering problem a = 0, ka = 1.0,
right side of figure shows relation between element No.
and shell deflection amplitude.

Fig. 7 Vibration mode and sound radiation pattern when the
external force acts at element Ne. 11 .
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Table 1 Reeiprocal relationship between acoustic radiationl
problem and scattering Problem '

N
a | w(a)]/ pcE » [F(x,a ) /q w Error (%)
0 0.31490 X 107> |  0.31565 x 10-3 0.238
- 0.28599 0.28675 0.266
n/2 0.23846 0.23927 0.340
In/4 0.20401 0.20481 0.392
A 0.19048 0.19124 0.399

* Shell deflection amplitude at point A appling incident plane
acoustic wave in the direction a .

*% Intensity of radiated sound power in the direction « when
the external force q acts at point A,




